

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

REEXAM PAPER - JUNE 2022 Examinations

J. Y. M. Full (Mel

Program: BTECH (MECHANICAL ENGG.)

Course Code: PC-BTM606

Course Name: CAD/CAM/CIM

Duration: 3hrs

Maximum Points: 100

Semester: VI

817122

Important Notes:

Solve any five questions out of seven

• Figures to the right indicates full marks

Assume suitable data wherever necessary

Q.No.	Questions	Points	со	BL	PI
Q.1 (a)	Triangle PQR has vertices as P(2,4), Q (4,6) and R (2,6). it is desired to reflect through an arbitrary line L whose equation is y=0.5x+2. calculate the new vertices of the triangle and show the results graphically		1	1	3.2.1
(b)	Write a C++ program for Bresenhams Line algorithm.	[06]	2,4	3	5.2.1
(c)	Write a short note on Computer Integrated Manufacturing (CIM)	[04]			
Q.2 (a)	A triangle is defined by 3 vertices A (0,2,1) B (2,3,0), C (1,2,1). Find the final coordinates after it is rotated by 45 degree around a line joining the points (1,1,1) and (0,0,0)	[10]	2	3	3.2.1
(b)	The co-ordinates of four control points relative to a current WCS are given by Po=[2 2 0]T, P1=[2 3 0]T, P2=[3 3 0]T, P3=[3 2 0]T Find The equation of the resulting Bezier Curve. Also find the points on the curve for u=0,1/4,1/2,3/4 and 1.	[06]	1	1	3.2.1
(b)	Explain Bresenhams Circle algorithm with steps	[04]	3	3	5.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

REEXAM PAPER - JUNE 2022 Examinations

Q.3 (a)	Explain Graphics standards with neat sketches?	[10]	3	3	5.2.1
(b)	Explain the process of Reverse Engineering with neat sketches	[10]	2,3,4	1	3.2.1
Q.4 (a)	Fig.a Formulate a CNC program for Thread Cutting (M40 & M20) for the given fig.a using G76 Cycle	[06]	4	3	5.2.
(b)	Write & explain the Syntax of Peck drilling & Grooving cycle? Explain both the cycles with an example by using CNC code.	[06]	1	2	5.2.1
(c)	Explain Computer Aided Process planning with neat sketches?	[08]	3	3	5.2.1
Q.5 (a)	Explain Concurrent Engineering in detail with neat figures	[10]	3	3	5.2.1
(b)	Consider a line from (5,5) to (13,9). Use the Bresenhams Line Algorithm to rasterize the Line	[06]	3	3	5.2.1
(c)	Explain four properties of BEZIER curve with neat sketches	[04]	3	3	5.2.1
Q.6	Write a C++ program using Class & Objects for following 2D transformations. • Translation • Scaling • Rotation • Reflection • Shearing	[20]	2,4	3	5.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

REEXAM PAPER - JUNE 2022 Examinations

	Insert comments wherever necessary.				
Q.7	Write Short Notes on (Any Three) Object Oriented Databases (OODB) Relational Data base for design Augmented Reality Artificial Intelligence in Design Structured Query Language (SQL) DDA Algorithm	[20]	3,4	2	5.2.1, 3.2.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - MAY 2022 Examinations

Program: BTECH (MECHANICAL ENGG.) Son VI

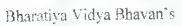
Duration: 3hrs

Course Code: PC-BTM606

Maximum Points: 100

Course Name: CAD/CAM/CIM

Semester: VI


Important Notes:

Solve any five questions out of seven

Figures to the right indicates full marks

Assume suitable data wherever necessary

Q.No.	Questions	Points	со	BL	PI
Q.1 (a)	A Rectangle ABCD is represented by the vertices A(20,20) B(106.603), C(81.603, 113.301), D(-5, 63.01). The Rectangle is rotated 30 degree about the vertex A. Determine the new Vertex positions A', B', C', D'. The transformed rectangle is then to be mirrored about a line joining the diagonal vertices A' and C'. Determine the new vertices of the rectangle.	[10]	1	1	3.2.1
(b)	Write a C++ program for Bezier Curve.	[06]	2,4	3	5.2.1
(c)	Write a short note on Computer Integrated Manufacturing (CIM)	[04]	1		
Q.2 (a)	A triangle is defined by 3 vertices A $(0,2,1)$ B $(2,3,0)$ C $(1,2,1)$. Find the final coordinates after it is rotated by 45 degree around a line joining the points $(2,2,2)$ and $(1,1,1)$	[10]	2	3	3.2.1
(b)	A Cubic Spline is represented by the following equation P(u)= C ₃ u ³ + C ₂ u ² + C ₁ u + C ₀ Where 0 <= U <= 1 Where C ₃ , C ₂ , C ₁ , C ₀ are the Polynomial Coefficients. Determine the four control points of an identical Bezier Curve in terms of these Polynomial Coefficients	[06]	1	1	3.2.1
(b)	Explain Z-Buffer algorithm with neat figures?	[04]	3	3	5.2.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination - MAY 2022 Examinations

(c)	Explain four properties of B-Spline curve with neat sketches	[04]	3	3	5.2.1
Q.6	Write a C++ program for following 2D transformations to be performed on line • Translation • Scaling • Rotation • Reflection • Shearing Insert comments wherever necessary. The program should contain code to	[20]	2,4	3	5.2.1
Q.7	Write Short Notes on (Any Three) Object Oriented Databases (OODB) Relational Data base for design Augmented Reality Artificial Intelligence in Design Structured Query Language (SQL) Gouraud Shading Algorithm	[20]	3,4	2	5.2.1, 3.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Re-Examination July 2022

Lem VI

Program: B.Tech. Mechanical Engineering

Duration: 03 Hrs

Course Code: PC-BTM612

T. M. D. Tech (Mech) Maximum Points: 100

Course Name: Machine Design

Semester: VI

Notes: 1. Solve any FIVE questions.

1217/22

2. Each question carries equal marks.

3. Assume suitable data wherever necessary and justify the same.

4. Use of Machine Design Data Book by V. B. Bhandari is permitted.

Q.No.	Questions	Points	CO	BL	PI
	 a) Explain quenching and tempering of steels. b) Designate high tensile steel casting with ultimate tensile strength of 1030 N/mm². 				
	c) What is R20 series? Develop R20 series from 1 to 10. d) Write inference of 50 H8-g7.				3.7
1	e) State and explain maximum shear stress theory of failure.	20	3	2	.1
2	A knuckle joint is required to withstand a tensile load of 25 KN. Design the joint if the permissible stresses are $\sigma_t = 56$ N/mm ² , $\sigma_c = 70$ N/mm ² , $\tau = 40$ N/mm ² .	20	1	5	5.4
	a) Write Soderberg's equation and state its application to different types of loading.	05			
3	 b) Explain fluctuating stress. Draw a stress time curve for fluctuating stress. c) A rectangular plate 50 mm X 10 mm with a hole 10 mm diameter is subjected to an axial load of 10 KN. Taking stress concentration into account, find the maximum stress induced. 	10	1	3	5.4
4	A mild steel shaft transmits 15 KW at 210 rpm. It is supported on two bearings 750 mm apart and has two gears keyed to it. The pinion having 24 teeth of 6 mm module is located 100 mm to the left of the right hand bearing and delivers the power horizontally to the right. The gear having 80 teeth cf 6 mm module is located 15 mm to the right of left hand bearing and receives power in the vertical direction from below. Assuming an allowable working shear stress as 53 MPa, and a combined shock and fatigue factor of 1.5 in bending as well as in torsion, Determine the diameter of the shaft.	20	2	4	5.5
5	a) Design a leaf spring for the following specifications: Total load is 140 KN; Number of spring supporting the load is 4; Maximum number of leaves is 10; Span of the spring is 1000 mm; Permissible deflection is 80 mm. Take young's modulus as E=200 KN/mm² and allowable stress in spring material as 600 MPa.	10	2	4	5.4

	b) Design a concentric spring for an aircraft engine valve to exert a maximum force of 5000 N under a deflection of 40 mm. Both the springs have same free length, solid length and are subjected to equal maximum shear stress of 850	10			
	MPa. The spring index for both the springs is 6. a) Design a rubber belt to drive a dynamo generating 20 KW at 2250 r.p.m. and fitted with a pulley 200 mm diameter. Assume dynamo efficiency to be 85%. Allowable stress for belt=2.1 MPa, Density of rubber=1000 kg/m³, Angle of contact for dynamo pulley=165°, Coefficient of friction	12			
	between belt and pulley=0.3.b) Derive the relation for the ratio of driving tensions of a V belt.	04			5.4
6	c) Sketch and explain the simplex and duplex chains.	04	2	5	.1
	a) Two plates of 10 mm thickness each are to be joined by means of a single riveted double strap butt joint. Determine the rivet diameter, rivet pitch, strap thickness and efficiency of the joint. Take the working stress in tension and shearing as 80 MPa and 60 MPa respectively. b) A 125 x 95 x 10 mm angle is welded to a frame by two 10 mm fillet welds, as shown in figure. A load of 16 KN is applied normal to the gravity axis at a distance of 300 mm from the centre of gravity of welds. Find maximum shear stress in the welds, assuming each weld to be 100 mm long and parallel to the axis of the angle.				
	All dimensions in mm.	05			
	c) Determine the safe tensile load for bolts of M 20 and M 36. Assume that the bolts are not initially stressed and take				5.5
7	the safe tensile stress as 200 MPa.	05	2	4	.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May 2022

Program: B.Tech. Mechanical Engineering T. Y. B. Teur Comentation: 03 Hrs

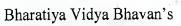
Course Code: PC-BTM612 Maximum Points: 100

Course Name: Machine Design Semester: VI

Notes: 1. Solve any FIVE questions.

2. Each question carries equal marks.

3. Assume suitable data wherever necessary and justify the same.


4. Use of Machine Design Data Book by V. B. Bhandari is permitted.

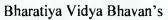
Q.No.	Questions	Points	со	BL	PI
	a) Describe Machinability and Castability properties of				
	engineering materials.				
	b) Give the designation of steel used for sprockets and Railway coaches.				
	c) The tolerance of a shaft and bearing are H8/g7. If the				
	nominal size of the shaft is 50 mm, determine the limits of				
	dimensions of shaft and bearing. What is the type of fit?				
	d) Explain the terms CLA and RMS.				
	e) List the ergonomic considerations to be taken into account				3.7
1	while designing a component	20	3	2	.1
	Design a cotter joint for the transmission of 25 KN tensile				
	load. Allowable stress for all the three components, i.e.,				
	socket, spigot and cotter may be taken as follows: $\sigma_t = 50$				5.4
2	N/mm^2 , $\sigma_c = 120 N/mm^2$, $\tau = 40 N/mm^2$.	20	1	5	.1
	a) Give practical example of high cycle fatigue.	05			
	b) Explain fluctuating stress. Draw a stress time curve for				
	fluctuating stress.	05			
	c) A solid circular shaft, 15 mm in diameter, is subjected to				
	torsional shear stress, which varies from 0 to 35 N/mm ²				
	and at the same time, is subjected to an axial stress that				
	varies from -15 to $+30$ N/mm ² . The frequency of variation				
	of these stresses is equal to the shaft speed. The shaft is				
	made of steel FeE 400 ($S_{ut} = 540 \text{ N/mm}^2$ and $S_{yt} = 400$				
	N/mm ²) and the corrected endurance limit of the shaft is				5.4
3	200 N/mm ² . Determine the factor of safety.	10	1	3	.2

	A pinion is the integral with the stepped shaft as shown in figure, and a gear is keyed to the shaft. The shaft is mounted on the bearings, B_1 and B_2 , as shown in figure. The tooth loads on pinion and gear are in the same plane. The tooth load on pinion is 4.8 KN, and the tooth load on gear is 3.6 KN. The torque transmitted is 400 Nm. Determine the diameter of the shaft at the bearings if $\sigma_{yt} = 360$ MPa and FOS = 3. E = 205 X 10^3 KN/mm, and G = 80 KN/mm ² . Take $K_b = 2.0$ and $K_t = 1.5$.				
	Pinion B ₁ B ₂ B_1 B_2 D B_3 D D D D D D D	20	2	4	5.5
4	a) A semi elliptical carriage spring for suspension in	20		† •	1.2
	automobile has 3 extra full length leaves and 10 graduated	10			
	length leaves, including the master leaf. The centre to				
	centre distance between the two eyes of the spring is 1.1				
	m. Maximum force on the spring is 80 KN. For each leaf,			}	
	b/t = 6. E for leaf material = 207 N/mm ² . Leaves are prestressed in such a way that when maximum force is				
	applied, the stress in all leaves is 500 N/mm ² . Determine:				
	(a) b and t, (b) initial nip, and (c) pre load required to close				
	the nip.				
	b) A closed coil helical extension spring needs to be				
	designed, for a spring balance with a capacity of 196.2 N.				
	The spring index is to be taken as 8. Choose a suitable				
	material and take the maximum allowable shear stress as				
	50 % of the ultimate tensile strength of the material. Give the specifications of the spring and make a simple sketch	10			5.4
5	of the spring.		2	4	.2
	a) Select a belt from Dunlop high speed for power				
	transmission of 11 KW from motor pulley running at 1440	12			
	rpm to machine pulley at 480 rpm. Centre distance				
	between the pulleys is 2.4 m. Velocity of the belt can be				
	taken from 14-16 m/s. Service factor as 1.2. Power				
	transmission from high speed belt is 0.0118 KW per mm				
	width per ply at $V = 5$ m/s. Take open belt drive system.	04			
	b) Explain the procedure for selection of a standard V belt.c) What is polygon effect in chain drive? How this effect is				5.4
6	c) What is polygon effect in chain drive? How this effect is minimized?	04	2	5	1.1

. .

	(a)	A bracket is connected to a channel in a structure through 6 rivets. If the eccentric load on the bracket is P=12 KN, and if maximum shear stress is not to exceed 100 MPa in any rivet, what is the size of the rivet?				
	h)	A 150 x 100 x 12.5 angle is welded on a steel gusset plate	10 05			
		by means of two parallel fillet welds along the edges of length 150 mm. The angle is subjected to a tensile load of 350 KN. Determine the lengths of the weld required, if the load is applied with heavy shock. Assume suitable shear stress value.	03			5.5
7	c)	Determine the tensile stress area of M16 X 1.5 bolt.	05	2	4	.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058


RE EXAM JULY2022	
DATE:19-07-2022	SESSION: Afternoon
Class: Third Year B.Tech.in Mechanical Engineering Sem VI	Semester: 👿 🔽
Course Name& Code-Manufacturing Planning and Control	PC-BTM605
Total Points 100	Time Allotted : 3hour
NB. 1.Que 1 is compulsory 2.Solve any 4 questions from remaining. 3.Assume Suitable Data wherever required 4 ND table are permitted.	1917122

Q. NO	Question Statem		Points	Module	СО							
Q1A	of various princ Manufacturing Pl Answer should in 1. Quality C 2. Use of JI 3. Use of Le 4. Use of Si	 Use of JIT / Lean Practices Use of Lean Six Sigma practices 									M3, M4, M5, M6, M7	CO1 CO3
Q1B	State the Salient Features of 1. Market Survey and Forecasting 2. Capacity Planning 3. Manufacturing Requirement Planning 4. Material Requirement Planning 5. Master Production Scheduling									10	M1 M3 M4 M5	CO1 CO2 - CO3
Q2A	State and explain and control	n the at	least 5	Applie	cations	of Mar	nufactur	ing Pla	nning	10	Ml	CO1 CO2
Q2B	Refer the Following Manufacturing Scenario of three machines and 7 jobs. Table shows the time required to process each job on the respective machine in min. Find the optimal sequence of jobs. Find Idle Time for each machine. Find Min Total Elapsed time. JOB								10	M4	CO2 CO3	
		A	В	C	D	Е	F	G				_
	Machine M1	10	7	6	5	7	9	4				
	Machine M2	6	7	10	6	5	4	8	-			
	Machine M3	10	14	12	14	111	12	13	=			1

	vehicles is	minimur	n.					covered by	,		
	Cities	D1	D2		D3	D4	D5	D6	41		
	C1	10	11		17	16	15	9	-		
	C2	11	19		24 17	9	8	10	1		
	C3	$\frac{12}{7}$	13		12	16	11	13			
	C4 C5	9	13		15	9	10	16	1	3	
	<u> </u>	<u> </u>									
В									10	M7	CO1
	Producti facility City of	on Pi / demand	P1	P2	P3	P4	Product Demand				CO2
	D1		21	22	23	22	27				
	D2		18	23	21	15	16				
	D3		22	18	22	19	17				
	D4		23	21	24	19	21				
	D5		21	24	21	22	12				
	Supply		20	16	25	32	93				
	productio 1000) lit be shipp	ration Pr n plants ters per d ped to	P1,P2,I ay of a 5 citie (1000	P3,P4 v produces D1	with pro ct respect, D2,D3,	duction ctively. D4,D5 ay respe	These units a with receptively. The	apany has for 20,16,25,32 are expected to transportation in table	to of on		
	Transport productio 1000) lit be shipp 27,16,17, cost in I Formulat find initial bareduction	nation Pr n plants: ters per d ned to 21,12 in Rs per u e LPP to al basic s asic solu	P1,P2,I ay of a 5 citie (1000 unit be 5 Find olution toortatio	P3,P4 v produces D1) liter tween the Mi to the o the n cost.	with proceed respect, D2, D3, rs per defactories in Cost transport	duction etively. D4,D5 ay responses and of Transfertation tation	recapacity of These units a with receptively. The cities are gensportation. Use problem. Use problem. Fire	20,16,25,32 are expected the transportation in table use NWCM to firm the LCM to firm the transportation to th	to of on e. to ond	M7, M3	CO
JA	Transport productio 1000) lit be shipp 27,16,17, cost in I Formulat find initial initial bareduction A comparavailabili 213 moperation	ration Property n plants ters per de to 21,12 in Rs per use LPP to al basic solution transpany manuty of proeds, whose	P1,P2,I ay of a 5 citie (1000 anit be o Find olution to outation ufactur duction se prob	produces D1 o) liter tween the Mi to the o the n cost. ed aro a resourability	with proper respect, D2, D3, rs per da factories in Cost transportrans	duction etively. D4,D5 ay respects and of Transportation tation	These units a with receptively. The cities are graph problem. Use problem. Fitters. Dependent	20,16,25,32 are expected the puirements of transportation in table in table with the transportation of the transportation in table in	to of on e. to ond ge he 10	M7, M3	CO
IA	Transport production 1000) lit be shipp 27,16,17, cost in I Formulate find initial bareduction A compa availability 213 mope Product per day	ration Pr n plants ters per d bed to 21,12 in Rs per u e LPP to al basic s asic solu in transp any man ity of pro- eds, whose ion 205	P1,P2,I ay of a 5 citie (1000 unit be Find olution tion to portatio ufactur ductior se prob 5 206	produces D1) liter tween the Mi to the n cost. ed aroundability 207	with proet respect, D2, D3, rs per de factorie in Cost transportransportransportrans distribut 208	duction etively. D4,D5 ay respects and of Transportation tation 210scool y prodution is a 209	recapacity of These units a with receptively. The cities are gonsportation. Use problem. Firstors. Dependention varies as follows: 210 211 0.15 0.11	20,16,25,32 are expected to transportation in table to the term of	to of on ee. to ond ge to to	M7, M3	CO1
JA	Transport production 1000) list be shipp 27,16,17, cost in I Formulate find initial initial bareduction A comparavailability 213 mopel Product per day Probabi The fin mopedsc array:82, process.	ration Property no plants ters per do 21,12 in Rs per use LPP to all basic solution in transpany manuality of propeds, whose ion 205 lity 0.0 ished so apacity. 89,78,24 Find averaged to the plants of the property of the pr	P1,P2,I ay of a 5 citie (1000 unit be 6 Find olution tion to ortatio ufactur ductior se prob 5 206 00tors (,53,61, erage 1 orry.	produces D1 or literative en the Min to the or the	with proceed respectively. D2,D3, rs per defectories in Cost transporter transporter distribution of 208 distribution folio 04,23,50 crof months of the cost of transporter distribution folio 04,23,50 crof months of the cost of transporter distribution folio 04,23,50 crof months of the cost of transporter distribution folio 04,23,50 crof months of the cost of transporter distribution folio 04,23,50 crof months of transporter distribution folio 04,23,50 crof months of transporter distribution folio 04,23,50 crof months of transporter distribution for the cost of transporter distribution for the cost of transporter distribution for transporter distribution for the cost of transporter dis	duction etively. D4,D5 ay respects and of Transportation etation etation etation etation is a 209 etation is a 209 etation eta	reapacity of These units a with receptively. The cities are gonsportation. Use problem. Use problem. Financial tors. Dependent of the problem	20,16,25,32 are expected to transportation in table to the LCM to firm the LCM to firm the percentage to the transportation of the LCM to firm the LCM to firm the transportation of the LCM to firm the transportation of t	to of on e. to ond ge to to of to of on the of to ond to of	M7, M3	CO2

-	follows A< D; A Draw the project Refer the followi	<e; b<f;="" d<br="">network, fir</e;>	<f; <<br="" f="">id proje</f;>	G, C<0	3; C <h< th=""><th>uence relationship F<i; g<i.<br="">d critical path.</i;></th><th>is as 10</th><th>M5</th><th>CO1,</th></h<>	uence relationship F <i; g<i.<br="">d critical path.</i;>	is as 10	M5	CO1,
•	Task: A Time: 12	B C 13 11	D 10	E 21	F 17	G H I 21 18 2			
	Find E and L for activity.	or each eve	nt. Fin	d EST,	LST,E	FT,LFT float for	each		
Q5B	PER I network of	Data as give	en in a as follo	table .T	he time	estimates in week	s for 10	M5	CO1,
	Activity	to		tm		tp			
	1-2	2		4		9			
	1-3	3	·	6		10			
1	1-4	2		4		11			
	2-5	3		5		7		į	1
	3-5	4		6		14			
1	4-6	5		7		11			
	5-6	4		8		15			
	the project will be	nance of the completed a	projec atleast	t length 2 week	. What earlier t	compute the stand is the probability han expected time	that		
Q6A	Derive an express of inventory. Deriv	sion for Eco ve an express	nomic sion for	Order(r Econo	Quantit mic Ba	of the (Basic mo	of	M3	CO2, CO4
Q6B	Example. State an	d explain the	nethod types	of Sal	es Fore	casting with suits	ible 10	Ml	CO1, CO2
	Write Short Notes	on						M1,M2,	COI
Q7	1. Differenti	ate between	CPM a	nd PER	T		20	M3,M4	C
	2. Technolog	gies used in l	Materia	ıls Mana	agemen	t		M5, M6	
	3. Master Pr	oduction Sch	edule					M7	
_	4. State the to elimina	factors affected the these factors	ting the	e capaci	ty of m	achine, Explore w	ays		

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

	1913
END SEM EXAM MAY2022	
Date: 19-05-2022	Session: Afternoon
Class : Third Year B.Tech.in Mechanical Engineering	Semester: VI
Course Name & Code-Manufacturing Planning and Control	PC-BTM605
Total Points 100	Time Allotted : 3hour

NB.

1. Que 1 is compulsory

- 2. Solve any 4 questions from remaining.
- 3. Assume Suitable Data wherever required
- 4 ND table are permitted.

Q. NO	Question Statement	Points	Module	CO
Q1	For the Electric Vehicle Manufacturing company, explore the applications of various principles, methodologies, tools and techniques of the Manufacturing Planning and control. Answer should include 1. Market Survey and Forecasting 2. Capacity Planning 3. Manufacturing Requirement Planning 4. Material Requirement Planning 5. Master Production Scheduling 6. Quality Control, Quality Assurance 7. Use of JIT / Lean Practices 8. Use of Lean Six Sigma practices 9. Use of Simulation for Inventory control 10. Uses of Industry 4.0 Technology for improved operations	20	M1, M2, M3, M4, M5, M6,	COI CO3
Q2A	A small manufacturer employees 5 skilled men & 10 semi skilled men & makes an article in 2 Types a deluxe model & an ordinary model. The making of deluxe model requires 2hrs. by a skilled man & 2hrs by semi skilled man. The ordinary model requires 1hr work by skilled & 3hrs by semi skilled man. By union rules no man can work more than 48hrs/week in 6 working days of week. The manufacturer's clear profit on deluxe model is Rs.10 & ordinary model is Rs.8.It is identified based on previous experimental records that Deluxe and ordinary model units must be produced not less than 5 and 10 respectively. Deluxe and ordinary models produce 1 and 2 kg of industrial wastes respectively. According to the govt. norms these waste can not be produced more 30 kgs and 40 kg for deluxe and ordinary models respectively. Deluxe model needs 2 units and Ordinary model needs 3 units of energy and permissible economical consumption of energy per week is 480 units. Determine the no. of units of deluxe model & ordinary model to maximize the profit. Solve it graphically. Assume suitable data if needed. Attach the graph paper at the page of solution.	10	M6	CO2

	JOB											
								-				15
		A	В	С	D	E	F	G				l
	Machine M1	12	6	5	3	5	7	6	-			
	Machine M2	7	8	9	8	7	8	3	+			
	Machine M3	9	13	11	12	10	12	11	1		+ -9-	
	Find Min Total 1	Elapse	d time	Expla	in IIT 1	rincin	es in d	etail	1		1	
		•		-	V 1	, ranorpi	C5 III Q	ctan.				
	A company has	one su	rplus	truck in	n each	of the c	ities A	A,B,C,D	and	10	M7	C
3A	E and one defice distance between	it truc n the	k in e	ach of	the ci	ties 1,2	2,3,4,5	and 6.	The			
	assignment of tr	uck fro	om citi	es in s	urplus	to citie	the n s in de	natrix. eficit so	Find that			
	total distance cov	vered b	y vehi	icles is	minim	ım .		21010 50	uitt			
	Cities 1	2		3	4	4	5	6	4			
	A 12	10		15	22		18	8				
	B 10 C 11	18		25	15		16	12				
	The state of the s	10		3	13	4	5 13	12			1	
	1 6						1 4	1 1 7			4	1
	D 6 E 8	14		11	$\frac{13}{7}$				-		1	
							13	10				
В										10	Ma	
В	E 8	12		11	7	1	13			10	M7	
В			P2			Prod	uct			10	M7	
В	Production facility Pi/City demand	12		11	7	1	uct			10	M7	
В	Production facility Pi/	12		11	7	Prod	uct			10	M7	
В	Production facility Pi/City demand	12		11	7	Prod	uct			10	M7	
В	Production facility Pi/City demand Di	P1	P2	P3	P4	Prod Dem	uct			10	M7	CC
В	Production facility Pi/City demand Di	P1 23	P2	P3	P4	Prod Dem	uct			10	M7	
В	Production facility Pi/City demand Di D1 D2	P1 23 17	P2 25 18	P3 19 23	P4 29 14	Prod Dem	uct			10	M7	
В	Production facility Pi/City demand Di D1 D2 D3	P1 23 17 25	P2 25 18 15	11 P3 19 23 28	P4 29 14 18	Prod Dem 26 15 19	uct			10	M7	
В	Production facility Pi/City demand Di D1 D2 D3 D4	P1 23 17 25 20	P2 25 18 15 24	11 P3 19 23 28 18	P4 29 14 18 17	Prod Dem 26 15 19 18	uct			10	M7	

Q4A	availability	of production re	around 200 moresources daily p	roduction var	ries between	10	M7, M3	CO1, CO2,
	197 to 205 r	nopeds, whose	probability distr	ibution is as t	follows:			CO3
,	Production per day	197 198 19		202 203	204 205			
	<u> </u>		12 0.14 0.2	0.15 0.11	0.08 0.06			
			transported in	special lorr	y with 200			
İ	mopedscapa		following	random	number			1
	array:82,89,	78,24,53,61,18,	45,04,23,50,77,	27,54 and 1	0, simulate			1
1	the process	.find average	number of mo	peds waiting	in factory,		9	1
	Average was	iting space in lo	orry.	-				
	Explain the	various types of	f costs of invent	ory with grap	h.			
Q4B	A manufact	urer has 5 lat	hes and three	milling mach	nines which	10	M6,	CO1
	produces an	assembly cons	isting of 2 units	s of part A an	d 3 units of		M2	CO2
	as follows.	processing time	e for each part of	on 2 types of	machines is			
	Part		cessing time					
		Lath	ne	Milling				
Ki .	A	10		18				
	В	25		12				1
	In order to	maintain unifor	m work load or	two types o	f machines.			
	manufacture	r follows the po	olicy that no type	e of machine	should run			1
	more than 4	0 min per day	longer than of	her machine	Formulate		1	
	LPP to prod	uce maximum	number of asse	mbly in 8hrs	of working		i i	
	day.			inory in only	or working			
	State the fact	tors affecting th	e capacity of m	achine . Expl	ore wave to			
	eliminate the	se factors.		, 271	ore ways to	-		
Q5A	Task A,B,C,	H,I constitu	e a project. The	precedence	relationship	10	M5	CO1,
	is as follows	A < D; $A < E$; $B < B$	<f: c<g:<="" d<f:="" td=""><td>C<h: f<i:="" g:<="" td=""><td><1</td><td></td><td></td><td>CO3</td></h:></td></f:>	C <h: f<i:="" g:<="" td=""><td><1</td><td></td><td></td><td>CO3</td></h:>	<1			CO3
	Draw the pro	ject network, fi	nd project durat	ion find criti	cal nath			
1	Refer the foll	lowing project of	data.	y1111 a v 1111	our puir.	-		
	Task: A	ВС	D E F	GH	III			
	Time: 9	11 9	11 17 1		5 10			
	Find E and L	for each event	Find EST, LST		or for soch			
	activity.		1 ma Do1, Do1	,1,1 1,1,1 11(Jat for each			
	,	between CPM a	and PERT					
Q5B	The time est	imates in week	s for PERT ne	twork of me	iggt one an	10	ME	001
	follows		is for 1 Little fic	awork of pro	gect are as	10	M5	CO1, CO3
	Activity	to	tm	1 +				CO3
	1-2	1	2	tp				
	1-3	1	5	9				
	1-4	$\frac{1}{2}$		9				
	2-5	1	3	10				
	3-5	2	2	3				
	4-6		6	16				
	5-6	2	6	10				
	L	3	7	17				1
1	Draw the proj						1	
	Find critical p	ath						
	Compute the	standard deviati	on and variance	of the projec	t length			
	What is the p	robability that han expected tire	the project will	be complete	d atleast 4			
j								

Q6A	A company Ordering co stock for a of 5percent discount of the most eco product is R	expression for Economic Onventory. has the annual demand for a st per order is Rs22 and the year is 18 percent. A supplication on an order of at least 2 10 percent on an order of a conomic purchase quantity ps. 16 per unit. invests in advertisement and sales revenue Y is shear the sales sales revenue Y is sh	product Carryinger offers 2000 unit t least 5 per order	t as 96000 units. The gost of one unit is a quantity discount its at a time and 000 units. Computer if the price of the	ne n n nt a e e e	M1	CO2, CO4.
	of Best Fit (r unit with \$2 dollars.	egression line) for the data, 8 million in investment. A	and pred	lict sales revenue o	f		002
	Units	Advertise investment Dollars (x)	in	Sales Revenue in Dollars (y)			
	1	10		0.19			1
	2	5		0.14			
	3	9		0.17			
	4	7		0.19			
	5	17		0.29			
	6	18		0.31			
	7	19		0.28			
	8	15		0.24			
	9	17		0.31			
	10	23		0.48			
	11	18		0.38			
	12	10		0.21			
	Explain Least with the help of	Square method used in Saf neat sketch.	ales/ De	mand forecasting			
Q7	2. Techno3. Master	otes on ons of MPC logies used in Materials Man Production Schedule Capacity Planning and Over			20	M1,M2, M3,M4 M5, M6 M7	COI

Standard Normal Probabilities

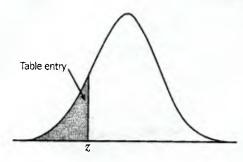


Table entry for z is the area under the standard normal curve to the left of z.

<u>z</u>	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	3,7,000,000	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0 064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	0116	.0113	.0110
-2.1	.0179	0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.07 21	.0708	.0694	.0681
-1.31	Water Comments of the Comments	,0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1:1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	31210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-010	.1841	1814	.1788	.1762	.1736	.1711	1685	1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	2420	.2389	.2358	.2327	2296	.2266	.2236	.2206	.2177	The second secon
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.5 ∖	.3085	3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
CALLES AND STREET, STR	LANGUE VELLANDER DE LA SERVICIO	3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	,4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Standard Normal Probabilities

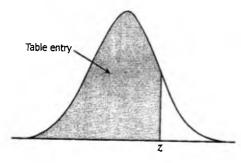


Table entry for z is the area under the standard normal curve to the left of z.

_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.17	• (58 98.)	, 5438	5478	517	,5557	.5596	,5636	5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	6179	5217	. ,6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915»	6950	/6985-	.7019	.7054	7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	3,7580 .	7611	7542	7673	7704	7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	:::::::::::::::::::::::::::::::::::::::	8238	.8264	.8289	8315	18340	8365	8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1/1	.8643	.8665	8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1,3	9032	9049	9066	9082	9099	.9115	.9131	.9147	.9162	9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
135	9332-2	e la kalendar	9357	9370	.9382	.9394	.9406	.9418	.9429	
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	9564	.9573	.9582	.9591	.9599	.9608	.9616	9625	9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	,9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	As a second	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2	989	9896	9.08	.9901	9904	.9906	.9909	,9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	-0540	9941	.9943	.9945	.9946	.9948	9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2,7,7	.9965	9986	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981.	.9982	9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9 987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3:1	.9990	9991	.9991	:9991+	A commence of the commence of	.9992	.9992	9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3/3	.9995	*/9995~	9995	.9996	9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
	· · · · · · · · · · · · · · · · · · ·								. 222/	סצצצ.

30/5/2

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examinations

T. y. B. Tech (Mech) Sem II

Program: Mechanical Engineering

Course Code: PC BTM 614

Course Name: Internal Combustion Engines

Duration: 03 Hrs.

Maximum Points: 100

Semester: VI

Notes:

Question No. 1 is compulsory.

Attempt any Four questions out of remaining six questions.

Answers to all sub questions should be grouped together.

All questions carry equal marks.

Make suitable assumptions with proper explanations.

Q. No.	• Wake suitable assumptions with proper explanations.	Poin ts	CO	BL	PI
Q. 1	Answer the following questions (any Four)	20	1 -	1-7	1.2.1
a)	What do you mean by normal and abnormal combustion in S I Engines? What are the parameters that govern the normal combustion in S I Engine?				
b)	State and Discuss the important qualities of SI engine fuel.			-	
c)	How are I C Engines classified?				
d)	What are the functions of a nozzle? Draw a schematic diagram of Bosch type Fuel pump.				
•	What are the main sources of pollutants from petrol engine? Discuss the adverse effects of emissions on human health.				
f)	Compare SI and CI engines with respect to: basic cycle, compression ratio, ignition, fuel used, and introduction of fuel.				
Q. 2 (A)	An experimental 4-Stroke gasoline engine of 1.7 litre capacity is to develop maximum power at 5000 rpm. The volumetric efficiency is 75% and the A/F ratio is 14:1. Two carburetors are to be fitted and it is expected that at maximum power the air speed at the choke is 100 m/s. The coefficient of discharge for the venturi is assumed to be 0.80 and that of main jet is 0.65. An allowance should be made for emulsion tube, the diameter of which can be taken as 1/3 of choke diameter. The gasoline surface is 6 mm below the choke at this engine condition. Calculate the sizes of a suitable choke and main jet. The sp. gr. of the gasoline is 0.75. Take atmospheric condition as 1	10	3	2	2.1.1

	bar and 300 K.		T	-	1
(B)	Enumerate the requirements of fuel injection systems for C.I. engines. With a schematic diagram, explain the working of distributor type fuel injection system. What are its advantages and disadvantages?	10	2 & 3	3	1.2.1
Q. 3 (A)	An eight-cylinder, four stroke diesel engine has a power output of 386.4 kW at 800 rpm. The fuel consumption is 0.25 kg/kWh. The pressure in the cylinder at the beginning of injection is 32 bar and the maximum cylinder pressure is 55 bar. The injector is expected to be at 207 bar and the maximum pressure at the injector is set to be about 595 bar. Calculate the orifice area required per injector if the injection takes place over 12° crank angle. Assume the following: Specific gravity of fuel = 0.85; Coefficient of discharge for the injector =	10	3	3	2.2.2
	0.6; atmospheric pressure = 1 bar; the effective pressure difference is the average pressure difference over the injection period.				
(B)	Explain the two types of cooling systems and compare them.	05	4	4	2.1.1
(B) (C)	Discuss the working principle of four stoke petrol engine with neat sketches.	05	4	4	2.1.1
Q. 4 (A)	A Morse test on 12 cylinders, two stroke C.I. engine of bore 40 cm and stroke 50 cm, running at 200 rpm. The following results were obtained during test: Condition Break load(N) Condition Break load (N)) All firing 2040 7st cylinder 1835	10	4	4	3.1.1
	1st cylinder 1830 8nd cylinder 1860 2nd cylinder 1850 9rd cylinder 1820 3rd cylinder 1850 10th cylinder 1840 4th cylinder 1830 11th cylinder 1850				
	5th cylinder 1840 12th cylinder 1830 6th cylinder 1855 All firing 2060 The output is obtained from dynamometer by using equation: BP= WN/180, Where, W= Break load in N and N= speed in rpm. Calculate IP, mechanical efficiency and BMEP.				
(B)	Describe the Combustion Phenomenon in S I engines with help of p-e	10	2	3	3.1.1
Q. 5 (A)	diagram and explain each stages of combustion. I) Explain Four stroke I.C. engine is always economical and less pollutant than two stroke I.C. Engine. What is the purpose of carrying out exhaust gas analysis?	05	1	5	2.1.1
	II) What are the different functions of lubricating systems? State the	05	1	6	2.1.1

	different lubricating systems used in I C Engines. Explain any one of them.	l			
(B)	The following observations were made during the test on oil engine: B.P. of the engine = 31.5 kW, Fuel used = 10.5 kg/hr, C.V. of the fuel = 43000 kJ/kg, Jacket circulating water = 540 kg/hr, Rise in temperature of cooling water = 56 °C Exhaust gases are passed through the exhaust gas calorimeter for finding the heat carried away by the exhaust gases. Water circulated through exhaust gas calorimeter = 454 kg/hr, Rise in temperature of water passing through exhaust gas calorimeter = 36°C, Temperature of exhaust gas leaving the exhaust gas calorimeter = 82°C, A/F ratio = 19.1, Ambient temperature = 17°C, Cp for exhaust gases = 1 KJ/kgK Draw up the heat balance sheet on minute and percentage basis.	10	4	4	2.2.2
Q. 6 (A)	An air compressor is being run by the entire output of a supercharged 4-stroke cycle diesel engine. Air enters the compressor at 25°C and is passed on to a cooler where 1210 kJ per minute is rejected. The air leaves the cooler at 65°C and 1.75 bar. Part of this air flow is used to supercharge the engine which has a volumetric efficiency of 72% based on induction manifold condition of 65°C and 1.75 bar. The engine which has six cylinders of 100 mm bore and 110 mm stroke runs at 2000 rpm and delivers an output torque of 150 Nm. The mechanical efficiency of engine is 80%. Determine: (i) The indicated mean effective pressure of the engine; (ii) The air-flow into compressor in kg per min.	10	4	3	2.1.1
B)	A good CI engine fuel is a bad SI engine fuel and vice versa. Discuss the validity of the above statement in the light of the eight factors to reduce knocking in SI and CI engines.	05	2		1.3.1
2.	 Write short note on following (any five) (A) Advantages and disadvantages of using hydrogen in SI engine (B) The air pollution norms recently used and how alternating fuels are suitable of recent developed engines. (C) Five important efficiencies of IC engines with appropriate applications (D) Properties of good lubricant (E) Various methods of determining frictional power (FP) (F) Wankel engines (G) Solex carburetor with neat sketch with fuel circuit 	20	2	1-7	1.3.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Re-Exam Semester Examinations

JULY 2022

M. Ten (Mech) Lem VI Duration: 03 Hrs.

Program: Mechanical Engineering

Maximum Points: 100 Course Code: PC BTM 614

Course Name: Internal Combustion Engines Semester: VI

Notes:

1117122

- Question No. 1 is compulsory.
- Attempt any Four questions out of remaining six questions.
- Answers to all sub questions should be grouped together.
- All questions carry equal marks.

Make suitable assumptions with proper explanations.

Q. No.	Make suitable assumptions with proper explanations.	Poin ts	CO	BL	PI
Q. 1	Answer the following questions (any Four)	20	1 - 3	1-7	1.2.1
a)	Discuss the factors to be considered for the design of combustion chambers of the diesel engine.				
b)	Explain the importance of alternatives fuels for I C Engine.				
c)	With the help of neat sketch discuss the constructions detail of spark plug.				
d)	Write short notes on Electric car vehicle.				
e)	Do I C Engines operate on a thermodynamic cycle? Draw the Otto cycle on p-V and T-s diagrams mark the various processes.				
f)	List three principal factors that influence engine performance? What is meant by the optimum spark advance?				
Q. 2 (A)	A simple jet carburetor is required to supply 6 kg of air per minute and 0.45 kg of fuel per minute of density 740 kg/m3. The air is initially at 1.013 bar and 27°C	10	3	2	2.1.1
	a) Calculate the throat diameter of the choke for flow velocity of 92 m/s. Velocity coefficient = 0.8.				
	b) If the pressure drop across the fuel metering orifice is 0.75 of that at the choke, calculate the orifice diameter assuming Cd = 0.60.				

(B)	Describe a battery ignition system with the help of sketch. What are the main disadvantages of a battery ignition system?	10	2 & 3	3	1.2.1
Q. 3 (A)	A three liter 4-stroke diesel engine develops 12 kW per m³ of free air inducted per minute. The volumetric efficiency is 82% at 3600 rpm referred to atmospheric condition of 1bar and 27°C. A rotary compressor which is mechanically coupled to the engine is used to supercharge the engine. The pressure ratio and the isentropic efficiency of the compressor are 1.6 and 75% respectively. Calculate the percentage increase in brake power due to supercharging. Assume mechanical efficiency of the engine to be 85% and air intake to the cylinder to be at the pressure equal to delivery pressure from compressor and temperature equal to 5.7°C less than the delivery temperature of the compressor. Also assume that cylinder contains volume of charge equal to swept volume.	10	3	3	2.2.2
(B)	Explain the reasons for looking for alternate fuels for I C engines. Compare LPG and petrol as fuel for S I engines.	05	4	4	2.1.1
(C)	What is the importance of lubrication in I C engines? State the importance of engine friction.	05			
Q. 4 (A)	A 6-cylinder, 4-stroke C I engine develops 220 kW at 1500 rpm with BSFC of 0.273 kg/kWh. Determine the size of the single hole injector nozzle if the injection pressure is 160 bar and the pressure in the combustion chamber is 40 bar. The period of injection is 30° of crank angle. Take density of fuel as 860 kg/m ³ and orifice discharge coefficient = 0.9	10	4	4	3.1.1
(B)	The following data relate to the testing of a 4-stroke, 4-cylinder diesel engine: Bore = 36 cm, stroke = 40 cm, speed = 350 RPM, BP =257 kW, IMEP = 7 bar, fuel consumption = 72 kg/h, C.V. of fuel = 43960 kJ/kg, air consumption = 28.2 kg/min, mass of jacket cooling water = 86 kg/min, rise in temperature of jacket cooling water = 41°C, amount of piston cooling oil = 53 kg/min, temperature rise of cooling oil = 23°C, specific heat of cooling oil = 2.09 kJ/kg,K, room temperature = 20°C, exhaust gas temperature = 325°C, Cp of dry exhaust gas = 1.045 kJ/kgK, specific heat of water = 4.18 kJ/kg K. Draw up the heat balance sheet on kW and percentage basis. Calculate indicated, brake thermal and mechanical efficiencies.	10	2	3	3.1.1
Q. 5 (A)	Discuss the difference between theoretical and actual valve timing diagram of a 4-Stroke diesel engine. Compare the relative advantages and disadvantages of 4-Stroke and 2-Stroke cycle engines.	10		5	2.1.1

(B)	I) Why cooling of an I C engines is necessary? Why is over-cooling in an engine harmful?	10	4	4	2.2.2
	II) What are the basic requirements of a good injection system?				
Q. 6 (A)	Describe the combustion Phenomenon in C I Engines with help of p-o diagram and explain each stages of combustion.	10	4	3	2.1.1
(B)	I) Explain main functions of an injection pump with schematic diagram	05	2		1.3.1
	II) Describe and explain the essential parts of a modern carburetor with a neat sketch.	05	2		
Q. 7	 Write short note on following (any four) (A) Explain the recent developments in IC engines like CRDI, ECU, GDI, HCCI. (B) Scavenging of two stroke engine C) Define the terms related to reciprocating I.C. Engines: (i) Stroke (ii) Bore (iii) Top Dead Centre (TDC) (iv) Clearance Volume (v)Displacement D) Explain firing order and how it is useful for design of ignition 	20	2	1-7	1.3.1
	system? E) What do you mean by performance of I C engines? What is the purpose of Morse test? F) State and explain causes and problems of exhaust emissions.				,

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER - EVEN SEM - MAY 2022

Program: B.Tech. in Civil/Electrical/Mechanical Engg.

Duration: 3 Hour

Course Code: OE-BTM614

Max. Points: 100

Course Name: Introduction to Optimization Methods

Semester: VI

Notes:

1. Question no. 1 is compulsory. Solve any 4 of the remaining 6 questions.

2. Refer Annexures for additional information. Assume suitable data if necessary.

3. 'a' is the single last digit (0 to 9) of student's registration no. in questions marked with *.

Q. No.		Questions		Points	co	BL	PI
COMPULSORY O	A) A student is studying Each course has a components per hour table also gives the export of study for each course.	(5)	3	4	2.1.3		
Ö	Study component	Course-1	Course-2				
	Programming Reading	0.8 hr 0.2 hr	0.2 hr 0.8 hr				
	Expected points per hour of study	1 points/hr	4 points/hr				
	The student has an int total 30 hours in a ser she can spend a maxi optimization problem both subjects taken to B) * Consider a multivari expression for $f(\bar{X} + \text{the function. } \bar{d} \text{ is a sm} f(x_1, x_2)$ Using the expression Hessian matrix can be function.	(5)	I	3	2.4.1		

	C) * Illustrate the bisection method by performing one iteration to find the minima of following function in the range (1,3). Use central difference method to numerically differentiate the function.	(5)	3	3	2.2.3
	$f(x) = x^2 + \frac{a+10}{x}$ D) Discuss the following computational aspects of optimization: (i) Need of scaling the variables, (ii) Basis vector method to reduce size of problem, (iii) Information to be analyzed about the nature of problem before selecting a suitable software tool.	(5)	2	2	2.2.3
Q2	A) * Minimize following function using KKT method. $ (a + 2)(x_1 - 10)^2 + (a + 5)(x_2 - 10)^2 $ Subject to	(10)	3	3	2.4.2
	$x_1 + x_2 - (a + 5) \le 0$ B) Prepare a comparison table to present differences in the features of following univariate optimization algorithms: (i) Exhaustive search method, (ii) Golden section method, (iii) Bisection method.	(5)	I	3	2.2.3
	C) * In Simulated Annealing (SA) algorithm, the Metropolis criterion and Boltzmann's probability distribution are used for a specific purpose; describe the purpose. Consider an iteration of SA where the value of temperature is 100.	(5)	3	3	2.2.3
	The objective function values for two successive points x_1 and x_2 are 100 and $(200+a)$ respectively. The random number generated to apply the Metropolis criterion is $(0.3+0.05*a)$. Determine if x_2 would be accepted as an optimal point during this iteration.				
Q3	A) (i) Solve the optimization problem in Q1(A) using graphical method. (ii) Propose a situation which converts this problem to a non-linear programming problem.	(5)	. 1	3	2.3.1
	B) * Perform one iteration of unidirectional search using exhaustive search method to minimize following function. $f(x_1, x_2) = -(7 + 0.25 \times a)x_1 - 15x_2 + 2x_1^2 + x_1x_2 + 5x_2^2$	(8)	3	3	2.2.3
	Consider starting point as $0 \\ 0$, search direction $\bar{s} = 1 \\ 1$ and step size of 0.5. Give a recommendation for selecting the search direction at a given				
	point. C) An optimization problem is defined as follows. Minimize $f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 3)^2$ Subject to $g_1(x_1, x_2)$: $x_1 + x_2 - p \le 0$ For $p=3$, optimal solution is $x_1^* = 1.5, x_2^* = 1.5$. Obtain the sensitivity of $f(x_1, x_2)$ with respect to p .	(7)	4	3	2.2.3
Q4	A) Provide the standard form of linear programming (LP) problem. Explain the terms: basic variables, non-basic variables and constants with reference to the canonical form of a LP problem. How do you obtain the basic solution to a LP problem? Describe the motivation of the Simplex method.	(5)	3	2	2.2.3

	B) An integer programming problem is defined as follows.		2	3	2.3.1
	Maximize $f = (5 + a)x_1 + (9 + a)x_2$	(10)	2	3	2.3.1
	Subject to				
	$(4+a)x_1 + (6+a)x_2 \le (75+20a)$				
	$(3+a)x_1 - (6+a)x_2 \le (20+10a)$				
	$x_1, x_2 \ge 0$, integers				1
	 Find initial real value solution using graphical method. 				
	• Develop the first branch of BBM based on x_l and find real				
	value solution using graphical method for the child node				
	having smaller numerical value.				
	Based on your result for the child node, mention further				
	course of action with proper reasoning based on the BBM				
	algorithm.				
	C) (i) Compare between the Genetic Algorithm and the Particle Swarm				
	Optimization algorithm.	(5)	1	3	2.2.3
	(ii) Compare between the deterministic and stochastic methods for				
	optimization.				
Q5	A) Describe different ways of classifying the optimization problems.	(5)	1	2	2.2.3
	Provide at least one example for each type of the problem.	(0)			
	B) Explain the Lagrange Multiplier method to solve the optimization			 	
	problems with equality constraints. Describe how this method can	(5)	1	2	2.2.3
	be extended to handle the problems with inequality constraints.	, ,	-	_	
	C) Perform two iterations of Particle Swarm Optimization (PSO)		3	3	2.3.1
-	algorithm to find the minima of following function in the range	(10)	,	,	2.3.1
	(1,3). Show detailed calculations for a typical case.				
	$f(x) = x^2 + \frac{10}{x}$				
	• Use two particles with initial positions $x_1(0) = \frac{1}{2}$				
	1.1 and $x_2(0) = 2.9$.				
	• Inertial weight: $\theta = 1$				
	• Individual and group learning rates: $c_1 = c_2 = 2$				
	• Random number for individual particle, $r_1 = 0.2$ (both				
	iterations)				
į	• Random number for group of particles, $r_2 = 0.6$ (both				
	iterations)				
Q6	A) Solve the optimization problem in Q1(A) using Simplex method.	(10)	3	3	2.3.1
~	B) Discuss the Karush-Kuhn-Tucker (KKT) optimality conditions for	(5)	1	2	2.2.3
į	obtaining the stationary point for a general optimization problem.	(3)			
	C) Perform one iteration of the basic random search algorithm to solve				
į	the following unconstrained optimization problem.	(5)	3	3	2.3.1
	•	` ′			
1	$f(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$ Identify the pay initial point and the pay range at the and of this				
	Identify the new initial point and the new range at the end of this				
-	iteration. Consider the following parameters:				
-	• Number of random samples per iteration = 3	1	- 1		
	• Initial point: $\bar{x}^0 = (1,2)$, Initial range: $\bar{z}^0 = (2,2)$				

	 Range reduction 	factor: 0.25					
	Generate randon	n numbers using th	e scientific calculator.				
Q7	A) Describe the Simplex algorithm.	method using a de	etailed flowchart for the	(5)	3	2	2.2.3
	B) * Apply Golden Section the minima of following			(5)	3	3	2.2.3
	 C) * Answer following que Find length of the 3 decimal accur. Following table 	stions related to G ne binary string to acy in the range of	represent a variable up to 1 to $(10+a)$. In about the population	(10)	2	4	2.2.2
į		nary string of	Fitness				9
	No.	member					
	1	10010	75+a				
į	2	01001	50+a				
	3	00100	35+a				
	4	11001	25+ a				
		00010	10+a 1 by the proportionate				
	reproduction o will get selected						
	• For the population parents. Consider generate the offs						
	 Provide the new previous step is r 						
	 A Python code (I Annexure II. Annexure 						
	where cun calculated.	nulative probabili	dentify the line number by of each specimen is				
			ole k in line number 31.				
		may be used in the	le p_mut in line number le subsequent hidden code				

ANNEXURE I (Sensitivity equations using KKT formulation)

$$\frac{df(\overline{X})}{dp} = \frac{\partial f(\overline{X})}{\partial p} + \sum_{i=1}^{n} \frac{\partial f(\overline{X})}{\partial x_i} \frac{\partial x_i}{\partial p}$$

$$\begin{bmatrix} [P]_{n\times n} & [Q]_{n\times q} \\ [Q]_{q\times n}^T & [0]_{q\times q} \end{bmatrix} \begin{Bmatrix} \frac{\partial x_i}{\partial p} \Big|_{n\times 1} \\ \frac{\partial \lambda_j}{\partial p} \Big|_{q\times 1} \end{Bmatrix} + \begin{Bmatrix} [a]_{n\times 1} \\ [b]_{q\times 1} \end{Bmatrix} = \begin{Bmatrix} [0]_{n\times 1} \\ [0]_{q\times 1} \end{Bmatrix}$$

$$\begin{split} P_{ik} &= \frac{\partial^2 f(\bar{X})}{\partial x_i \partial x_j} + \sum_{j \in J_1} \lambda_j \frac{\partial^2 g_j(\bar{X})}{\partial x_i \partial x_k} & J_1 \text{ is the set of active constraints} \\ Q_{ij} &= \frac{\partial g_j(\bar{X})}{\partial x_i} & j \in J_1 \\ a_{\bar{i}} &= \frac{\partial^2 f(\bar{X})}{\partial x_i \partial p} + \sum_{j \in J_1} \lambda_j \frac{\partial^2 g_j(\bar{X})}{\partial x_i \partial p} & j \in J_1 \\ b_j &= \frac{\partial g_j(\bar{X})}{\partial p} & j \in J_1 \end{split}$$

ANNEXURE II: Genetic Algorithm (Partial Code)

```
def choice by roulette(sorted_population, fitness_sum):
       offset = \theta
2
       normalized_fitness_sum = fitness_sum
3
4
       lowest fitness = apply function(sorted_population[0])
5
       draw = random.uniform(0, 1)
6
7
       accumulated = 0
8
       for individual in sorted_population:
9
           fitness = apply function(individual) + offset
10
           probability = fitness / normalized_fitness_sum
11
           accumulated += probability
12
13
           if draw <= accumulated:
14
                return individual
15
16
17 def crossover(individual_a, individual_b):
       maxbits=11 # accommodate (-6.00,+6.00) with 2 decimal accuracy
18
19
       xa = individual_a["x"]
20
       ya = individual a["y"]
21
       xb = individual b["x"]
22
       yb = individual b["y"]
23
       #convert real numbers with 2 decimals
24
```

```
xa_bin = convert_real_to_binary_list(xa,maxbits)
25
       ya_bin = convert_real_to_binary_list(ya,maxbits)
26
       xb_bin = convert_real_to_binary_list(xb,maxbits)
27
       yb_bin = convert_real_to_binary_list(yb,maxbits)
28
29
       # generating the random number to perform crossover
30
       k = random.randint(1, maxbits)
31
       # interchanging the genes
32
       for i in range(k, maxbits):
33
           xa_bin[i] = xb_bin[i]
34
       # generating the random number to perform crossover
35
       k = random.randint(1, maxbits)
36
       # interchanging the genes
37
       for i in range(k, maxbits):
38
           ya_bin[i] = yb_bin[i]
39
40
       x_new = int("".join(str(i) for i in xa_bin),2)/100.0
41
       y_new = int("".join(str(i) for i in ya_bin),2)/100.0
42
43
       return {"x": x_new, "y": y_new}
44
45
46 def mutate(individual):
       maxbits=11
47
48
       x = individual["x"]
49
       y = individual["y"]
50
51
       #convert real numbers with 2 decimals
52
       x_bin = convert_real_to_binary_list(x,maxbits)
53
       y_bin = convert_real_to_binary_list(y,maxbits)
54
55
       p mut=0.005 # probability of mutation
56
57
       >>> code hidden <<<
58
59
       next_x = int("".join(str(i) for i in x_bin),2)/100.0
60
       next y = int("".join(str(i) for i in y_bin),2)/100.0
61
       lower_boundary, upper_boundary = (-6, 6)
62
       # Guarantee we keep inside boundaries
63
       next_x = min(max(next_x, lower_boundary), upper_boundary)
64
       next_y = min(max(next_y, lower_boundary), upper_boundary)
65
       return {"x": next_x, "y": next_y}
66
```


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Endsem May 2022

Programme: Third Year B.Tech. in Mechanical/Civil/Electrical

Engineering '

Course Name & Code: Open Elective - Entrepreneurship

Development and Start Up (OE-BTM613)

28/5/2022

Semester: VI

Session: Afternoon

Time: 3 Hrs.

Points: 100

Note:

1. Question 1 is Compulsory.

2. Attempt any 4 out of the remaining 6 questions.

Q. No.	Question	Points	CO/ MO	B.T. Level
1 a.	Define Entrepreneur as per French Economist J. B. Say?	02	01/01	01
ı a.	List different Qualities of an Entrepreneur.	03		
1 b.	Distinguish Between Innovation and Invention.	05	01/02	01
1 c.	What is Market Research?	02	02/03	01
1 0.	List Different Techniques of Market Research?	03		
1 d.	Give the Classification of MSME?	05	04/07	01
2 a.	Describe different types of Barriers to Entrepreneurship?	10	01/01	01
2 b.	Read the paragraph given below carefully. Define a Problem Statement from your understanding of the paragraph.	02	02/02	03, 06
	Generate Ideas using SCAMPER and give atleast 1 example each, which solves the problem defined.	08	03/02	
	Paragraph:			
	According to (National Oceanic of Atmospheric Administration, US Dept.) NOAA's 2020 Annual Climate Report the combined land and ocean temperature has increased at an average rate of 0.13 degrees Fahrenheit (0.08 degrees Celsius) per decade since 1880; however, the average rate of increase since 1981 (0.18°C / 0.32°F) has been more than twice that rate.			
	Based on NOAA's global analysis, the 10 warmest years on record have all occurred since 2005, and 7 of the 10 have occurred just since 2014. Looking back to 1988, a pattern emerges: except for 2011, as each new year is added to the historical record, it becomes one of the top 10 warmest on record at that time, but it is ultimately replaced as the "top ten" window shifts forward in time.			
	The amount of future warming Earth will experience depends on how much carbon dioxide and other greenhouse gases we emit in coming decades. Today, our activities—burning fossil fuels and clearing forests—add about 11 billion metric tons of carbon to the atmosphere each year. According to			

	the 2017 U.S. Climate Science Special to increase rapidly, as they have since of this century, global temperature will warmer than the 1901-1960 average, as warmer. If annual emissions increase a significantly by 2050, models project to degrees warmer than the first half of the degrees warmer.		- 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	•	
3 a .	Explain the Market Research Procedure	e?	10	02/03	02
3 b.	What is Prototyping? Why is Prototypi	ng Necessary?	10	02/04	01
4 a.	List different techniques of Market Res What are the limitations of the Market What is WIPO? What are its functions	04 06	02/03	01	
	Match the Products with its Type of Int Products	04	0 11 03	(
	(a) Design of Musical Instrument	Intellectual Property (1) Copyright			
	(b) Musical Lyrics				
	(c) Logo of Music Company				
	(d) Tanjore Veena	(3) Patent (4) Trademark			
5 a.	Given in the figure is the Regular Chair and Draw the Sketches of the ideas on the ideas of the	Prototype? Create atleast 5 ideas the chair showing its function? Wooden Material.	10	03/04	03, 06

What is Techno-Economic Feasibility? What are the contents of Feasibility Report?	10	04/06	01
What is PCT? Why use PCT? What are its Advantages?	10	04/05	01
What is the role of commercial banks in providing institutional finances to the SSIs?	06	04/07	01
List commercial banks which provide financial support to the SSI and Start-Ups.	04		
WI			
What are different Technical Considerations required for Feasibility Report?	10	04/06	01
What is Start-Up India Scheme? What are the objectives of the Start-Up India Scheme?	10	04/07	01
	What is PCT? Why use PCT? What are its Advantages? What is the role of commercial banks in providing institutional finances to the SSIs? List commercial banks which provide financial support to the SSI and Start-Ups. What are different Technical Considerations required for Feasibility Report? What is Start-Up India Scheme?	What is PCT? Why use PCT? What are its Advantages? What is the role of commercial banks in providing institutional finances to the SSIs? List commercial banks which provide financial support to the SSI and Start-Ups. What are different Technical Considerations required for Feasibility Report? What is Start-Up India Scheme?	What is PCT? Why use PCT? What are its Advantages? What is the role of commercial banks in providing institutional finances to the SSIs? List commercial banks which provide financial support to the SSI and Start-Ups. What are different Technical Considerations required for Feasibility Report? What is Start-Up India Scheme? 10 04/06

SARDAR PATEL COLLEGE OF ENGINEERING, MUMBAI

DEPARTMENT OF MECHANICAL ENGINEERING

END SEMESTER EXAMINATION, MAY 2022 T. 4. B. Tech Service VI

PROGRAM: Find B.Tech. (Mechanical), Semester-VI COURSE: OE-BTM611- Computational Methods

Total Points: 100 **Duration: 3 HOURS**

Note:

- Answer any 5 question out of 7 questions. Each question carries 20 points,
- Answer should be very specific and to the point,
- Make suitable assumptions if needed,
- Answer of all sub-questions must be grouped together in answer book.
- Data in the last column represents course outcome and Blooms Taxonomy of respective question.

CO/BL

Q1. What is a boundary value problem? Give an engineering application and

2/3,4 20

explain. Develop approximate solution for the following problem using Shooting Method.

$$\frac{d^2y}{dx^2} - 2y = 8x(9-x), \quad y(0) = 0 \text{ and } y(9) = 0$$

Take a step size as 3 and show the data in tabular form with calculation steps.

What is least square regression analysis? Explain. Following table shows the thermal expansion coefficient with the temperature. 20 1,2/1,3

	20	60	100	150	200	300	400
Temp °C	30	2	100	5	6	7	8
$\alpha(mm)/^{\circ}C$	2	3	4-	3			

Regress the data to a second order polynomial.

Q3. Differentiate between IVP and BVP with real life example. Name single step 2,3/1,4 20 and multi-step method (2 methods for each).

Solve the first order ordinary differential equation $\frac{dy}{dt} = y - 3t^2$ subject to

initial condition y(0) = 1. Use RK4 with a step size of h = 0.1 and obtain the solution till t = 0.5 in tabular for with details of steps of calculation. Discuss the error by comparing the numerical solution with the exact solution given by $y_{exact} = 3t^2 + 6t + 6 - 5e^t$.

How Taylor series helps to find numerical derivatives. State different schemes with sufficient representation of first order and second order Q4. derivative term. Also mention their order of accuracy.

1,2,3 20 /1,2,3

The velocity of particle which starts from the rest is given below

	, , , , , , ,	-										
-	T (sec)	0	2	4	6	8	10	12	14	16	18	20
1	1 (300)	,									ς	
	V (m/s)	0	16_	29	40	46	51	32	18	В	3	" _
ļ	. (=: =)	l	l	•			<u> </u>	<u> </u>	<u> </u>			

Q5. What is the significant of numerical interpolation in engineering? Name any 20 /1,3,4 three numerical techniques.

1,3

1,2/3,4

20

Construct Newton's divided difference polynomial of second order using following data. Also comment on nature of possible polynomial based on difference table.

illicicie				0.6	0.0	1	1.2
х	1	0.2	0.4	0.6	0.8		2.0726
f(x)	0	0.0016	0.0256	0.1296	0.4096	1	2.0736

Q6. State limitations of Newton Raphson method. Solve for one of the roots of the following equation by the Newton Raphson method and compare the result with secant method.

$$x^3 - 6x^2 + 8x + 0.8 = 0$$

Analyse the rate of convergence.

1,2,3 ${f Q7.}$ Solve the following system of equations correct to two decimal places. 20 /3,4 $2.412x_1 + 9.879x_2 + 1.564x_3 = 4.89$ $1.876 x_1 + 2.985 x_2 + 11.62 x_3 = -0.972$ $12.214x_1 + 2.367x_2 + 3.672x_3 = 7.814$

Use following methods to formulate and compare the result,

a. Gauss-Jacobi method

b. Gauss-Seidel method

Show result in tabular form for minimum six iterations.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations July 2022

Program: T.

T. Y. B Tech (Mechanical Engg.) Lem Y

Duration: 3 hr

Course Code: PE-BTM518

Maximum Points: 100

Course Name: Mechanical Vibration

Semester: VI

14/7/22

1. Q. no. 1 is compulsory, solve any four out of remaining.

2. Answers to each sub-questions must be grouped together

3. Use of scientific calculator is allowed

4. Begin answer to each question on new page.

5. Candidates should write the answers legibly

Q. No.	Questions	Pts	Co	BL	PI
1	a) What is meant by Beats phenomenon? Draw amplitude versus time diagram and explain the various terms involved in it.b) Material property like young's modulus can be obtained by knowing	5 5	1, 2	2, 3	2.4
	natural frequency of the system. Explain with suitable example.	3			
	c) Write the expression for <i>displacement transmissibility</i> ; explain the same with suitable figure.	5			
	d) Determine the equivalent spring stiffness for the system shown. ($k_1 = 300 \text{ kN/m}$, $k_2 = 450 \text{ kN/m}$, $k_3 = 550 \text{ kN/m}$, $k_4 = k_5 = 500 \text{ kN/m}$	5			
2	a) Consider a spring mass damper system with $k = 8 \frac{kN}{m}$, $m = 20 kg$, and $c = 80N - \frac{s}{m}$. Find the steady state response of the system under the harmonic force $F(t) = 400 Cos(10t) N$	10	3	4	
	b) A spring-mass system is set to vibrate from zero initial conditions under a harmonic force. The response is found to exhibit the phenomenon of beats with the period of beating and oscillation equal to 0.5s and 0.05s resp. Find the natural frequency of the system and the frequency of the harmonic force.	10			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations July 2022

3	a) Determine the displacement, velocity, and acceleration of the mass of a	10	1,	2,	2.4
_	spring-mass system with, $k = 500$ N/m, $M = 20$ kg, and i) $x_0 = 0$ m, $dx_0/dt = 5$ m/s, ii) $x_0 = 0.1$ m, $dx_0/dt = 0$ m/s		2	3	
	b) The free-vibration responses of an electric motor of weight 981 N mounted on the foundation is shown in Fig. Identify the following: (i) the spring constant and damping constant of the foundation, and (ii) the undamped and damped natural frequencies of the electric motor.	10			•
4	a) A weight of 100 N is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic force of amplitude 120 N and frequency 6 Hz. Find (i) the extension of the spring due to the suspended weight, (ii) the static displacement of the spring due to the maximum applied force, and (iii) the amplitude of forced motion of	6	2	3	2.3
	the weight. b) State assumptions made and derive the equation of fundamental frequency for the Dunkarley method.	10	3	4	
	c) Define the term "magnification factor", how it is related to frequency ratio? Explain with suitable diagram.	4	3	4	
5	a) An automobile is modeled as a single-degree-of-freedom system vibrating in the vertical direction. It is driven along a road whose elevation varies sinusoidally. The distance from peak to trough is 0.2 m and the distance along the road between the peaks is 35 m. If the natural frequency of the automobile is 2 Hz and the damping ratio of the shock absorbers is 0.15, determine the amplitude of vibration of the automobile at a speed of 60 km/hour. If the speed of the automobile is varied, find the most unfavorable speed for the passengers.	6+8	1, 2, 3	4	2.2
	b) Write the expression for forced equation of motion of a viscously damped system, Draw in a vector diagram representing same	6			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations July 2022

6	a) The mass and stiffness matrices and the mode shapes of a two-degree-of-freedom system are given by $ \begin{bmatrix} m \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} 12 & -k_{12} \\ -k_{12} & k_{22} \end{bmatrix}, \overline{X}^{(1)} = \begin{bmatrix} 1 \\ 91109 \end{bmatrix}, \overline{X}^{(2)} = \begin{bmatrix} -9.1109 \\ 1 \end{bmatrix} $	10	3	4	2.3.2
	If the first natural frequency is given by $\omega 1 = 1.70 rad/s$ determine the stiffness coefficients and the second natural frequency of vibration. b) Find the free-vibration solution of a cord fixed at both ends when its initial conditions are given by, $w(x, 0) = 0, \frac{\partial w}{\partial t}(x, 0) = \frac{2ax}{l} \text{for} 0 \le x \le \frac{l}{2}$ $\frac{\partial w}{\partial t}(x, 0) = 2a\left(1 - \frac{x}{l}\right) \text{for} \frac{l}{2} \le x \le l$	10	3	4	
7	 Answer the following: a) The measurement of vibration has become necessary, Why? (list any five point). b) Draw flow-diagram of basic vibration measurement scheme. Discuss the function of each block. c) What are the different types of frequency measuring instrument? Explain any one of them. d) How does a continuous system differ from a discrete system in the nature of its equation of motion? 	20	4	3,4	2.3.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End-Sem Examinations May 2022

T. Y. B Tech (Mechanical Engg.) Lew V_Duration: 3 hr

Maximum Points: 100

Semester: VI

Program:

Course Code: PE-BTM518

Course Name: Mechanical Vibration

- 1. Q. no. 1 is compulsory, solve any four out of remaining.
- 2. Answers to each sub-questions must be grouped together
- 3. Use of scientific calculator is allowed
- 4. Begin answer to each question on new page.
- 5. Candidates should write the answers legibly

Q.No.	Questions	Pts	Co	BL	PI
1	 a) A damper offers resistance 0.12 N at constant velocity 4 cm/sec. The vibrating system consists of a spring K = 100 N/m along with this damper. Calculate the following for this single-degree-of-freedom system having mass m = 3 kg, i. Natural time period, τ 	5			
	 ii. Damped frequency, ω_d iii. Critical damping constant, cc iv. Damping ratio, ξ v. Logarithmic decrement, δ b) A flywheel is mounted on a vertical shaft, as shown in Fig. The shaft has a diameter d and length l and is fixed at both ends. The flywheel has a weight of W and a radius of gyration of r. Find the natural frequency of the longitudinal vibration of the system. 	5			
	c) Obtain the influence coefficient matrix for the system shown in	5	1,2	2,3	2.4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End-Sem Examinations May 2022

	d) A spring-mass system with $m = 0.5$ kg and $k = 10,000$ N/m, with negligible damping, is used as a vibration pickup. When mounted on a structure vibrating with an amplitude of 4 mm, the total displacement of the mass of the pickup is observed to be 12 mm. Find the frequency of the vibrating structure.	5			
2	a) Determine the displacement, velocity, and acceleration of the mass of a spring-mass system with, $k = 500 \text{ N/m}$, $M = 2 \text{ kg}$, and $x_0 = 0.1 \text{ m}$, $dx_0/dt = 5 \text{ m/s}$.	8	1,2	2,3	2.4
	b) The free-vibration responses of an electric motor of weight 500 N mounted on the foundation is shown in Fig. Identify the following: (i) the spring constant and damping constant of	12			
f 	the foundation, and (ii) the undamped and damped natural frequencies of the electric motor.				
3	a) A weight of 50 N is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic force of amplitude 60 N and frequency 6 Hz. Find (i) the extension of the spring due to the suspended weight, (ii) the static displacement of the spring due to the maximum applied force, and (iii) the amplitude of forced motion of the weight.	6	2	3	2.3.2
	b) Consider a spring mass damper system with $k = 4000 \frac{N}{m}$, $m = 10 kg$, and $c = 40N - \frac{s}{m}$. Find the steady state response of the system under the harmonic force $F(t) = 200 Cos(10t) N$. and initial condition $x0 = 0.1m$ and $\dot{x}0 = 0$	10	3	4	•
	c) Give any three examples for harmonically excited system.d) Define the term "magnification factor", how it is related to frequency ratio?	2	2	2	
4	a) An automobile is modeled as a single-degree-of-freedom system vibrating in the vertical direction. It is driven along a road whose elevation varies sinusoidally. The distance from peak to trough is 0.2 m and the distance along the road between the peaks is 35 m. If the natural frequency of the automobile is 2 Hz and the damping ratio of the shock absorbers is 0.15, determine the amplitude of vibration of the automobile at a speed of 60 km/hour. If the speed of the automobile is varied, find the most unfavorable speed for the passengers.	6+8	1,2,3	4	2.2
	b) Explain the "displacement transmissibility".	3			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End-Sem Examinations May 2022

	c) Show the various terms in the forced equation of motion of a viscously damped system in a vector diagram.	3			
5	a) The mass and stiffness matrices and the mode shapes of a two-degree-of-freedom system are given by $ [m] = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}, [k] = \begin{bmatrix} 12 & -k_{12} \\ -k_{12} & k_{22} \end{bmatrix}, \overline{X}^{(1)} = \begin{cases} 1 \\ 9.1109 \end{cases}, \overline{X}^{(2)} = \begin{cases} -9.1109 \\ 1 \end{cases} $ If the first natural frequency is given by $\omega 1 = 1.70 \ rad/s$ determine	10	3	4	2.3.2
	the stiffness coefficients and the second natural frequency of vibration. b) Determine the equations of motion and the natural frequencies of the system shown in Fig	10	1,2	4	
	m_1 m_2 m_3				
6	 Answer the following: a) The measurement of vibration has become necessary, Why? (list any five point). b) Draw flow-diagram of basic vibration measurement scheme. Discuss the function of each block. c) What are the different types of frequency measuring instrument? Explain any one of them. d) How does a continuous system differ from a discrete system in the nature of its equation of motion? 	20	4	3,4	2.3.1
7	a) Find the free-vibration solution of a cord fixed at both ends when its initial conditions are given by, $w(x,0) = 0, \qquad \frac{\partial w}{\partial t}(x,0) = \frac{2ax}{l} \qquad \text{for} \qquad 0 \le x \le \frac{l}{2}$	10	3	4	2.4
	$\frac{\partial w}{\partial t}(x,0) = 2a\left(1 - \frac{x}{l}\right) \text{for} \frac{l}{2} \le x \le l$ b) State assumptions made and derive the equation of fundamental frequency for the Dunkarley method.	10	1		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re _Exam - July 2022

T. y. B. Tech (me

Duration: 3 Hrs

Course Code: PE BTM 532

Program: Mechanical

Maximum Points: 100

Course Name: Composite Material Technology

Semester: VI

Notes: Assume suitable data whenever necessary

1417/22

Solve [Any Five]

Q.No.	Questions	Points	СО	BL	PI
	Explain the relative importance of basic materials				
	in a historic context and Why Composite material				-
	is preferred over steel, justify with example				-
la		10	1	I	1.5.1
	Why most of the composite material is in the				
1b	fibre form and Classify Composite material	10	1	II	5.4.1
	Explain different types of fibres and Explain	,			
	different types of Matrix				
2 a		10	2	II	1.6.1
	Explain the Metal Matrix Composites in detail				
	and Explain the Ceramic Matrix Composites in				
	detail				
2b		10	2	II	5.4.1
3a	Explain the Polymer Matrix Composites in detail	10	2	TTT	- 4 1
oa		10	3	III	5.4.1
	Justify the need of 'Strain Compatibility'	· ·			
3b		10	4	II	5.4.1
	D'				
4	Discuss the Deformation and relative				
4a	displacement vector	10	4	III	1.6.1
	Discuss the Stress Tensor				
4b	Discuss the stress refisor	10	4	Ш	5.4.1
	Discuss the Equilibrium using Force Balance &		. 0	111	V.T. 1
	Moment Balance				
5a		10	4	VI	1.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai = 400058

Re _Exam - July 2022

	And the second s				1
5b	Discuss composite post processing operations in brief	10	3	VI	1.6.1
6а	Explain pultrusion and Autoclave moulding process in composites	10	3	I	5.4.1
6b	Discuss the hand lay up and spray lay up	10	3	III	5.4.1
7a	Discuss material consideration in product design in composite	10	4	III	5.4.1
7b	Explain various industrial applications of Composite material	10	3	III	1.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem - May 2022 Examinations

T. M. B. Tery (merk) Sem II

Program: Mechanical

Duration: 3 Hrs

Course Code: BTM 532

Maximum Points: 100

Course Name: Composite Material Technology

Semester: VI

Notes: Assume suitable data whenever necessary

Q.No.	Questions	Points	СО	BL	PI
1a	Identify different applications of composite material with suitable examples	10	1	I	1.5.1
1b	Explain the Glass fiber manufacturing with schematic diagram	10	3	II	5.4.1
2a	Describe different natural fibers and role of matrix in the fibers	10	2	II	1.6.1
2b	Explain different manufacturing process of composite material	10	3	II	5.4.1
3a	Discuss pultrusion and Autoclave moulding process in composites	10	3	III	5.4.1
4a	Describe the most Metal Matrix composites and its advantages and disadvantages	10	1	II	5.4.1
4b	Show the typical properties of ceramic metal matrix composites and its applications	10	2	III	1.6.1
5a	Demonstrate the application of silicon carbide matrix composites and manufacturing process SCM	10	3	III	5.4.1
5b	Create the term deformation in composite and obtain strain tensor	10	4	VI	1.6.1
6a	Formulate the term Stress Tensor	10	4	VI	1.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Sem - May 2022 Examinations

7-	Shamaha hand lawan and arrow lawan	10	2	ī	5 4 1
7a	Show the hand lay up and spray lay up	10	3	1	3.4.1
=14	Demonstrate composite post processing				
7b	operations in brief	10	4	III	5.4.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

END SEM EXAMINATION, May-2022

Program: B. Tech. in Mechanical Engineering

Class: Third Year B. Tech. (Mechanical)

Course code: PEC-BTM 538

Course: Industrial Management and Enterpreneurship

29 5/2

Date: 25 May 2022

Duration: 3 Hr. Max. Points: 100

Semester: VI

Instructions:

Attempt ANY 05 questions.

Draw neat diagram /Sketch/Block Diagram wherever necessary.

• Use Graph paper for drwaing Break-Even Chart

Legible hand writting, proper figures and tidy work carry weightage.

Answers to the questions should be Brief and Specific.

Q. N.	Question	Points	00	Module	B	ř.
1	A) Differentiate: between Administration and Management of an organisation. Discuss: Process of Management in an organisation.	(10)	1	1	IV,V	9.1.1
	B) Explain: Various functions of Management in an organisation.	(10)	1	1	I.	9.1.1
2.	A) Describe: Types of techniques of motivation. Illustrate: With example motivation techniques practised in an industry.	(10)	1,2	2	II,III	9,1.1
	B) Explain: Scope and importance of Human Resource					
	Management in various functional areas of an organization. Illustrate: With suitable examples.	(10)	1	2	II,III	9.1.1
3	A) Explain: Assumptions and limitations in break-even analysis. ABC Industries Ltd. provides the following data of its operations. Selling price per article = Rs.10/-, Variable Cost per article = Rs.6/, Fixed Cost = Rs. 80,000/ Construct: Break-even chart and Determine: Break-even point. Carry out analysis starting with 0 units of sale, to the output units of 30000 in increments of 5000 units.	(10)	2	3	II, III,V	9.1.1
	B) Explain: Difference between Cost Control and Cost Reduction. Describe: Techniques for Cost Control and Programmes for Cost Reeduction in an organisation.	(10)	2	3	II	9.1.1

4	A) Explain: Significance, sources and uses of Fixed Capital and				-	-
	Working Capital for an industrial organisation.	(10)	2	4	П	0.1.1
	B) Explain: Meaning, significance and types of assets and					9.1.1
	liabilities of an industrial organisation with suitable examples.	(10)	2	4	II	9.1.1
5	A) Define: Enterpreneurship. Justify: An enterpreneur differs from a manager by describing entrepreneurial characteristics.	(10)	3	5	I,V	9.1.1
	B) Explain: Need for promotion of enterpreneurship and small					
	business especially in country like India.	(10)	3	5,6	II	9.1.1
6	A) Define: ERP. Explain: Importance of ERP in an industrial	(10)	4	7	I, II	9.1.1
	organisation.					
	B) Explain: Steps of implementation of ERP in industry.	(10)	4	7	п	9.1.1
7	Expalin: ANY THREE of the following in brief:	(20)			II	9.1.1
	A) Managerial Skills		1	1		
	B) ERG Theory of motivation	- Principal	÷∈ 1	2		
	C) Methods of Depreciation		2	3		
	D) Financial Statements		2	4		
	E) ERP-II		4	7		ļ

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai -- 400058

End Semester Examinations - May 2022 Examinations

Duration: 03 Hrs

Course Code: PE-BTM539 Maximum Points: 100

Course Name: Professional Elective-II, Additive Manufacturing

Semester: VI

Notes:

1. Question number 1 is compulsory

2. Solve any four questions from question number 4 to 7.

3. If necessary assume suitable data with justification

Program: T.Y.B. Tech. (Mech. Engg.) Jem VI

4. Draw neat labeled sketches wherever required.

Q. No.	Questions	Points	СО	BL	PI
I	Prototype consists of triangular pyramid is to be develop using following RP processes (i) Scanning Type Stereolithography (ii) Bulk lithography (iii) Laminated Object Manufacturing (iv) Selective Inhibition Sintering Triangular pyramid is to be developed using compatible material for above mentioned processes. State (i) Compatible materials with above processes. (ii) Part orientation in developing part with above processes. (iii) Explain process plan with neat schematic diagram of above processes iv) Support process plan with at least five critical sliced sections of part geometry (Note: Answer shall clearly show slicing place, sliced geometry, hatched section etc.).	20	1, 2,3,4	6	4.5.1
2 (A)	Describe extrusion based RP systems. Discuss Fused deposition modeling (FDM) process with a neat labeled diagram. Discuss various sub-systems of FDM. In one of the FDM system issues in linear scan speeds is observed due to error in software program. On investigation it is observed that X scan speed is optimum, however the Y scan (in the direction of pitch) is twice the optimum speed. Explain consequences in part fabrication. Further in case if Y scan speed would have been optimum and X scan speed being twice the optimum X scan speed, comment in which case part quality would be worst.	10	3	6	3.8.1
2 (B)	Explain mathematical form of cured depth in ceramic or metal microstereolithograhy along with Mie theory. Explain influence of followings material properties on curing radius and cured depth i) Particle mean size ii) Particle size distribution	10	1	4	3.8.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations - May 2022 Examinations

	iii) Refractive index of powder iv) Refractive index of UV curable solution	Refractive index of UV curable solution Absorption coefficient of powder Note: Draw rough graphs with curing radius and cured epth taken on y-axis on common graph depicting influence f materials properties. Material properties shall be on x-axis. Justify each of the characteristics). Lin stereolithography with neat sketches neat sketches explain constraint surface stereolithography (MSL)? Discuss advantages and issues constraint surface MSL. Ineat sketch explain design of flexural mechanism for XY ing system neat sketch explain shape deposition manufacturing ss. Take suitable part geometry to explain processes and in with neat labeled diagram the process plan for component of scaffold type structure for biomedical cations. Explain important aspects in processing slurry scaffold fabrication. Explain promising materials for cations. neat diagram explain Multi-jet modeling process. 10 11 12 12 13 14 15 16 17 17 18 18 19 19 10 11 10 11 11 11 12 11 11 12 11 12 12 13 13 14 15 15 16 17 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18			
	,				
3 (A)	Explain stereolithography with neat sketches	10	2	5	3.1.1
3 (B)	With neat sketches explain constraint surface microstereolithography (MSL)? Discuss advantages and issues with constraint surface MSL.	10	1	1	1.6.1
4 (A)	With neat sketch explain design of flexural mechanism for XY scanning system	10	3	2	3.1.1
4 (B)	With neat sketch explain shape deposition manufacturing process. Take suitable part geometry to explain processes involved in shape deposition manufacturing.	10	1	3	1.6.1
5(A)	Explain with neat labeled diagram the process plan for development of scaffold type structure for biomedical applications. Explain important aspects in processing slurry way scaffold fabrication. Explain promising materials for applications.	10	4	4	3.1.1
5(B)	With neat diagram explain Multi-jet modeling process.	10	2	4	1.6.1
6(A)	Explain various methods to avoid stair-stepping effects in Additive Manufacturing processes	10	1	4	4.5.1
6(B)	State process of unconstraint depth photopolymerization with the first principles (using nonlinear Shrodinger equation, diffusion and non-linearity due to change of refractive index)	10	3	3	2.8.1
7(A)	Explain .stl and amf file format and its importance.	10	2	1	1.6.1
7(B)	What is amorphous material? Discuss its behavior on volume against Temperature diagram. List few amorphous materials used in RPT.	10	3	2	3.1.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Reexaminations - JULY 2022 Examinations

T.Y. D. Feeh (Mcch) Leur **Duration: 03 Hrs**

Program: T.Y.B. Tech. (Mech. Engg.)

Maximum Points: 100

Course Code: PE-BTM539

Semester: VI

Course Name: Professional Elective-II, Additive Manufacturing

Notes:

1. Question number 1 is compulsory

2. Solve any four questions from question number 4 to 7.

3. If necessary assume suitable data with justification

4. Draw neat labeled sketches wherever required.

Q. No.	Questions	Points	СО	BL	PI
1	Explain following processes with neat sketches (i) Bulk Lithography (ii) Stereolithography (iii) Fused Deposition Modeling (iv) LOM	20	1, 2,3,4	6	4.5.1
2 (A)	Describe extrusion based RP systems. Discuss Fused deposition modeling (FDM) process with a neat labeled diagram. Discuss various sub-systems of FDM. In one of the FDM system issues in linear scan speeds is observed due to error in software program. On investigation it is observed that X scan speed is optimum, however the Y scan (in the direction of pitch) is twice the optimum speed. Explain consequences in part fabrication. Further in case if Y scan speed would have been optimum and X scan speed being twice the optimum X scan speed, comment in which case part quality would be worst.	10	3	6	3.8.1
2 (B)	Explain mathematical form of cured depth in ceramic or metal microstereolithograhy along with Mie theory. Explain influence of followings material properties on curing radius and cured depth i) Particle mean size ii) Particle size distribution iii) Refractive index of powder iv) Refractive index of UV curable solution v) Absorption coefficient of powder (Note: Draw rough graphs with curing radius and cured depth taken on y-axis on common graph depicting influence of materials properties. Material properties shall be on x-axis Justify each of the characteristics).	10	1	4	3.8.1
3 (A)	Explain (i) challenges involved in microstereolithography	10	2	5	3.1.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Reexaminations - JULY 2022 Examinations

	mechanism for XY scanning system		y		
3 (B)	With neat sketches explain constraint surface microstereolithography (MSL)? Discuss advantages and issues with constraint surface MSL.	10	1	1	1.6.1
4 (A)	Explain AM process plan with neat diagram	10	3	2	3.1.1
4 (B)	involved in shape deposition manufacturing. Explain steps suggested by Mueller for selecting the proper		1	3	1.6.1
5(A)	Explain steps suggested by Mueller for selecting the proper type of material for additive manufacturing.	10	4	4	3.1.1
5(B)	With neat diagram explain the post processing method suitable for micro-voxels obtained from unconstraint depth photopolymerization.	10	2	4	1.6.1
6(A)	Explain various methods to avoid stair-stepping effects in Additive Manufacturing processes	10	1	4	4.5.1
6(B)	State process of unconstraint depth photopolymerization with the first principles (using nonlinear Shrodinger equation, diffusion and non-linearity due to change of refractive index)	10	3	3	2.8.1
7(A)	Explain ASCII and amf file format and its importance.	10	2	1	1.6.1
7(B)	What is amorphous material? Discuss its behavior on volume against Temperature diagram. List few amorphous materials used in RPT	10	3	2	3.1.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May 2022

Program: B. Tech Mechanical

T. M. B. Tech (Duration: 3 Hours

Course Code: PC-BTM611

Maximum Points: 100

Course Name: Refrigeration and Air-Conditioning.

Semester: VI

Instructions:

1) Question number ONE is compulsory and solve any FOUR questions out of remaining SIX

2) Use of refrigerant properties table and psychrometric chart is permitted.

3) Use of steam table is permitted.

4) Assume suitable data, mention it and justify the same.

Q.No.	Questions	Points	co	BL	PI
l(a)	Discuss the effect of evaporator pressure and condenser pressure on performance of vapour compression cycle.	05	1	1	1.4.1
1(b)	Discuss about thermodynamic wet bulb temperature and wet bulb temperature.	05	1	1	1.4.1
l(c)	Define Effective temperature. Enlist the factors governing effective temperature.	05	3	1	1.4.1
l(d)	Moist air enters a chamber at 7°C DBT and 2.5°C thermodynamic WBT at a rate of 100 cmm. The barometric pressure is 1.01325 bar. While passing through the chamber, the air absorbs sensible heat at the rate of 100 kW and pics up 50 kg/h of saturated steam at 150°C. Determine the dry and wet bulb temperature of leaving air.	05	4	2	2.4.1
2(a)	A R-134a vapour compression system at a condenser temperature of 40° C and an evaporator temperature of 0° C develops 15 tons of refrigeration. Using p-h diagram for R-134a, determine (i) The discharge temperature and mass flow rate of the refrigerant circulated, (ii) The theoretical piston displacement of the compressor and piston displacement per ton of refrigeration, (iii) The theoretical horsepower of the compressor and horsepower per ton of refrigeration, (iv) The heat rejected in the condenser, and (v) The Carnot COP and actual COP of the cycle.	12	2	3	2.4.1
2(b)	Draw schematic diagram and T-s diagram of reduced ambient aircraft refrigeration system and explain its working. Also write an expression for COP of the system.	.08	1	2	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar. Andheri (W) Mumbai – 400058 End Semester Examination May 2022

3(0)	Investigated to co				
3(a)	Investigate the effect of humidity on the density of moist air by computing the vapour density for an air water vapour mixture at 26°C and relative humidities of 0, 50 and 100 per cent. Also, for each case compare the values of the degree of saturation to the values of relative humidity.	t	3	3	2.4.1
3(b)	Describe in detail all the desirable properties an ideal refrigerant.	10	1	2	1.4.1
4(a)	A sample of moist air is at 37°C DBT and 30°C WBT. If barometric pressure is 700 mm of Hg. Calculate followings for a sample of air without making use of psychrometric chart (i) Relative humidity (ii) Humidity ratio (iii) Dew point temperature (iv) Density and (v) Enthalpy.		1,2	3	2.4.1
4(b)	Discuss mechanism of body heat loss and explain mathematical model of heat exchange between man and environment.	10	3	1	1.4.1
	In an industrial application for winter air conditioning an air washer is used with heated water spray followed by a reheater. The room sensible heat factor may be taken as unity. The design conditions are: Outside: 0°C DBT and dry Inside: 22°C DBT and 50% RH Room heat loss: 703 kW The following quantities are known from the summer design. Ventilation air: 1600 cmm Supply air: 2800 cmm Spray water quantity: 500 kg/min The air washer saturation efficiency is 90 percent. The make-up water is available at 20°C. Calculate (i) The supply air condition to space (ii) The entering and leaving air conditions at the spray chamber. (iii) The entering and leaving spray water temperatures. (iv) The heat added to the spray water. (v) The reheat, if necessary.	20	4	3	2.4.1
6(a)	Explain practical single effect water-lithium bromide absorption chiller with neat sketch.	12	1	1	1.4.1
6(b)	Explain various methods of duct design.	08	3	1	1.4.1
7(a) 1	What is effective temperature? Explain what comfort chart is and also explain human comfort.	10	3	1	1.4.1
7(b) I	Draw a neat sketch of T-s and p-v diagram of actual vapour compression cycle and explain how it is different than simple saturation vapour compression cycle.	10	1	1	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re- Examination July 2022

T.y. B. Teu (Mein) Sem I

Program: B. Tech Mechanical

Duration: 3 Hours

Course Code: PC-BTM611

Maximum Points: 100

Course Name: Refrigeration and Air-Conditioning.

Semester: VI

1577/22

Instructions:

1) Question number ONE is compulsory and solve any FOUR questions out of remaining SIX

2) Use of refrigerant properties table and psychrometric chart is permitted.

3) Use of steam table is permitted.

4) Assume suitable data, mention it and justify the same.

Q.No.	Questions	Points	СО	BL	PI
1(a)	Explain use of liquid vapour regenerative heat exchanger in vapour compression refrigeration system.	05	1	1	1.4.1
1(b)	Compare primary refrigerants and secondary refrigerants.	05	1	1	1.4.1
1(c)	Compare window air conditioner and split air conditioner.	05	1	1	1.4.1
1(d)	Define following terms: (i) Humidity ratio (ii) Relative Humidity (iii) Degree of saturation (iv) Dew point temperature (v) Wet bulb temperature	05	3	1	2.4.1
•	Discuss bootstrap aircraft refrigeration system by drawing schematic diagram and temperature entropy diagram.	08	1	1	2.4.1
2(b)	A R-134a vapour compression system operating at a condenser temperature of 45°C and evaporator temperature of 0°C develops 15 tons of refrigeration. Using p-h diagram (chart) for R-134a, determine (i) the discharge temperature and mass flow rate of the refrigerant circulated (ii) the theoretical piston displacement of the compressor and piston displacement per ton of refrigeration (iii) the theoretical horsepower of the compressor and horsepower per ton of refrigeration (iv) the heat rejected in the condenser and (v) the Carnot COP and actual COP of the cycle.	12	2	2	1.4.1
3(a)	Describe in detail the designation system of refrigerants.	10	3	1	2.4.1
3(b)	Draw neat sketch of actual vapour compression cycle with p-h and T-S diagrams and explain it in detail.	10	1	1	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examination July 2022

4(a)	A sample of moist air is at 30°C DBT and 20°C WBT. If barometer pressure is 740 mm of Hg. Calculate for sample of air without using psychrometric chart. (i) Relative humidity (ii)	10	3	2	2.4.1
	Humidity ratio (iii) Dew point temperature (iv) Density and (v) Enthalpy				
4(b)	Explain in detail the various methods of duct design.	10	3	1	1.4.1
5	Given for a conditioned space: Room sensible heat gain = 20 kW Room latent heat gain = 5 kW Inside design conditions = 25°C DBT, 50% RH Bypass factor of the cooling coil = 0.1 The return air from the space is mixed with the outside air before entering the cooling coil in the ratio of 4:1 by weight. Determine: (i) Apparatus dew point (ii) Condition of air leaving cooling coil (iii) Dehumidified air quantity. (iv) Ventilation air mass and volume flow rates (v) Total refrigeration load on the air conditioning plant.	20	4	3	2.4.1
6(a)	Draw neat sketch of comfort chart and explain it in detail also explain human comfort.	10	3	1	1.4.1
6(b)	Draw neat sketch of three-fluid refrigeration system and explain it in detail.	10	3	1	1.4.1
7(a)	Discuss mechanism of body heat loss and explain mathematical model of heat exchange between man and environment.	10	3	1	1.4.1
7(b)	Discuss about various pressure losses occurring in air distribution system.	10	3	1	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar. Andheri (W) Mumbai – 400058

Re- Examination July 2022

T. 4. D. Tein (Mery) Som II

Program: B. Tech Mechanical

Duration: 3 Hours

Course Code: PC-BTM611

Maximum Points: 100

Course Name: Refrigeration and Air-Conditioning.

Semester: VI

1577/22

Instructions:

1) Question number ONE is compulsory and solve any FOUR questions out of remaining SIX

2) Use of refrigerant properties table and psychrometric chart is permitted.

3) Use of steam table is permitted.

4) Assume suitable data, mention it and justify the same.

Q.No.	Questions	Points	CO	BL	PI
1(a)	Explain use of liquid vapour regenerative heat exchanger in vapour compression refrigeration system.	05	1	1	1.4.1
1(b)	Compare primary refrigerants and secondary refrigerants.	05	1	1	1.4.1
1(c)	Compare window air conditioner and split air conditioner.	05	1	1	1.4.1
1(d)	Define following terms: (i) Humidity ratio (ii) Relative Humidity (iii) Degree of saturation (iv) Dew point temperature (v) Wet bulb temperature	05	3	1	2.4.1
•)	Discuss bootstrap aircraft refrigeration system by drawing schematic diagram and temperature entropy diagram.	08	1	1	2.4.1
2(b)	A R-134a vapour compression system operating at a condenser temperature of 45°C and evaporator temperature of 0°C develops 15 tons of refrigeration. Using p-h diagram (chart) for R-134a, determine (i) the discharge temperature and mass flow rate of the refrigerant circulated (ii) the theoretical piston displacement of the compressor and piston displacement per ton of refrigeration (iii) the theoretical horsepower of the compressor and horsepower per ton of refrigeration (iv) the heat rejected in the condenser and (v) the Carnot COP and actual COP of the cycle.	12	2	2	1.4.1
3(a)	Describe in detail the designation system of refrigerants.	10	3	1	2.4.1
3(b)	Draw neat sketch of actual vapour compression cycle with p-h and T-S diagrams and explain it in detail.	10	1	1	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

Re- Examination July 2022

4(a)	A sample of moist air is at 30°C DBT and 20°C WBT. If barometer pressure is 740 mm of Hg. Calculate for sample of air without using psychrometric chart. (i) Relative humidity (ii) Humidity ratio (iii) Dew point temperature (iv) Density and (v) Enthalpy	10	3	2	2.4.1
4(b)	Explain in detail the various methods of duct design.	10	3	1	1.4.1
5	Given for a conditioned space: Room sensible heat gain = 20 kW Room latent heat gain = 5 kW Inside design conditions = 25°C DBT, 50% RH Bypass factor of the cooling coil = 0.1 The return air from the space is mixed with the outside air before entering the cooling coil in the ratio of 4:1 by weight. Determine: (i) Apparatus dew point (ii) Condition of air leaving cooling coil (iii) Dehumidified air quantity. (iv) Ventilation air mass and volume flow rates (v) Total refrigeration load on the air conditioning plant.	. 20	4	3	2.4.1
6(a)	Draw neat sketch of comfort chart and explain it in detail also explain human comfort.	10	3	1	1.4.1
6(b)	Draw neat sketch of three-fluid refrigeration system and explain it in detail.	10	3	1	1.4.1
7(a)	Discuss mechanism of body heat loss and explain mathematical model of heat exchange between man and environment.	10	3	1	1.4.1
7(b)	Discuss about various pressure losses occurring in air distribution system.	10	3	1	1.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION MAY 2022

T. M. B. Tell MudDyration: 3 hour

Program: Mechanical Engineering

Course Code: PE-BTM 537 Maximum Points: 100

Course Name: Tool Engineering Semester: VI

INSTRUCTIONS:

1. Question number 1 is compulsory & Attempt any four questions out of remaining six questions.

2. Draw neat schematic diagrams wherever necessary, highlight important points of answer.

3. Assume suitable data if necessary and mention it.

Q.No	Questions	Point	со	BL	PI
Q1	During orthogonal outer diameter (O.D.) turning of 'SS314' tube having				
A)	O.D. 35 mm on lathe machine. Refer the following input data- Rake angle of tool is 35°, Cutting velocity (V _c) is 15 m/min, feed is 0.1 mm/revolution of workpiece, length of continuous chip in one	10	1	3	1. 2.
	revolution is 50.72 mm, cutting force is 200kgf, feed force is 80 kgf. Calculate- Shear plane angle, Coefficient of friction, velocity of chip along tool face and chip thickness?	T			1
Q1	How can forming limit diagram (FLD) can be formed using a set of				2.
B)	specimens? Give significance to each region's FLD and draw labeled test setup?	10	3	2	1.
Q2	Explain different tool geometry features of a single point cutting tool with the help of a neat sketch?	5	2	1	1. 2.
A)					1
B)	Determine value of orthogonal rake angle, inclination angle, maximum rake angle of a turning tool, whose geometry is specified as per ASA system as, [10°, -10°, 16°, 16°, 20°, 25°, 0 (inch)]? Draw tool geometry in ASA system and ORS system?	10	2	2	2. 1. 1
C)	Differentiate between free cutting and non-free cutting (orthogonal cutting operation)?	5	2	2	2. 2. 1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION MAY 2022

Q3.	D 1 1 . 6					1.
A)		nent of cutting forces with the help of three working of strain gauge type 2-D turning	5	2	1	2.
,	dynamometer in brief?	working of strain gauge type 2 D turning				2
B)	1 -	lection criteria in detail based on process				1.
	performance and effect on	the workpiece/machine tool system?	5	2	2	1.2
C)	Explain the different	design requirements of the tool force				
	dynamometer?					2
	Give comparison of cooling fluids?	ng and lubrication effects for different cutting	10	3	2	1 2
	Write a short note on lubri				ļ	
Q4.	Give advantages to thread	rolling and ring rolling operation?				1
A)			5	3	2	$\begin{vmatrix} 2\\2 \end{vmatrix}$
B)	Explain Cluster rolling Mills with the help of a neat schematic sketch					2
	along with their specific a	pplication?	5	3	1	1 1
<u>C)</u>		cess (mechanics) with the help of a neat				1
	schematic sketch? Give sig	gnificance to "Draft"?	10	3	2	$\begin{vmatrix} 2\\2 \end{vmatrix}$
Q5.	i) Sketch and calculate p	ounch and die size, ii) punch length and die				
A)	block size iii) Suggest m capacity?	aterial selection criteria for punch, iv) press				
	For manufacturing of har	d steel washer having outer diameter 25mm,		1		
		hickness 2.1 mm. Ultimate shear strength of				
		ssume efficiency of press 65%, and clearance				1
	for hard steel washer mate	erial is 4% of stock thickness.	10	4	3	1
	11 .	Total perimeter of washer to be sheared off				
	mm)	(in mm) 75 mm				
	15	75-250 mm				
	25	For larger perimeter values				
	30	Lear larger perimeier values	1			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION MAY 2022

B)	Explain the following sheet metal shearing operation along with one combined sketch? a) Trimming, b) Notching operations	5	4	1	1. 2. 1
C)	Give effects of clearance between punch and die on sheet metal shearing operation?	5	3	1	2. 1. 2
Q6.	 i) Determine bending force in channel/U bending for the following data: Thickness of blank = 3.2 mm, bending length = 900 mm, die radius = punch radius = 9.5 mm, ultimate tensile strength of material = 400 N/mm². ii) Explain upsetting/flat die forging, uniform deformation and pancaking with the help of a neat sketch? 	10	3	3	1. 2. 2
B)	How the continuous chip formation takes place in outer diameter turning of ductile material at high speed and low feed? Explain the relationship between plowing force and size effect? How cutting velocity affects the size of built up edge formation on cutting tool during machining operation?	10	1	2	1. 2. 1
Q7. A)	With the help of a neat schematic sketch explain die design features for impression die forging?	10	3	2	1. 2. 2
B)	Draw sketch and explain the rotary swaging/radial forging operation? Write a short note on forging defects?	10	3	1	2. 1. 1